Math, asked by Vespine, 1 month ago


 \huge{ \underline{ \underline{ \textsf{ \textbf{ \red{Question:-}}}}}}
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is tan⁻¹ √2.​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Let assume that

Height of cone be h units.

Radius of cone be r units.

Slant height of cone be l units.

Semi - vertical angle of cone be x.

Now,

\rm :\longmapsto\: {l}^{2} =  {r}^{2} +  {h}^{2}

\rm \implies\:\boxed{ \tt{ \:  {r}^{2} =  {l}^{2} -  {h}^{2} \: }} -  -  - (1) \:

Now, Consider Volume of cone,

\rm :\longmapsto\:V = \dfrac{\pi}{3} \:  {r}^{2}h

On substituting the value from equation (1), we get

\rm :\longmapsto\:V = \dfrac{\pi}{3} \:[{l}^{2} -  {h}^{2}] h

\rm :\longmapsto\:V = \dfrac{\pi}{3} \:[{l}^{2}h -  {h}^{3}]

On differentiating both sides w. r. t. h, we get

\rm :\longmapsto\:\dfrac{d}{dh}V =\dfrac{d}{dh} \dfrac{\pi}{3} \:[{l}^{2}h -  {h}^{3}]

\rm :\longmapsto\:\dfrac{dV}{dh} = \dfrac{\pi}{3} \dfrac{d}{dh} \:[{l}^{2}h -  {h}^{3}]

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dV}{dh} = \dfrac{\pi}{3} \: [ {l}^{2} -  {3h}^{2}]

For maxima or minima,

\rm :\longmapsto\:\dfrac{dV}{dh} = 0

\rm :\longmapsto\:\dfrac{\pi}{3}[ {l}^{2}  -  {3h}^{2}] = 0

\rm :\longmapsto\: {l}^{2}  -  {3h}^{2}= 0

\rm :\longmapsto\: {l}^{2} =   {3h}^{2}

\bf\implies \:l =  \sqrt{3}h -  -  - (2)

On substituting (2) in equation (1), we get

\rm :\longmapsto\:  {r}^{2} =  {( \sqrt{3} h)}^{2} -  {h}^{2}

\rm :\longmapsto\:  {r}^{2} =   {3h}^{2}  -  {h}^{2}

\rm :\longmapsto\:  {r}^{2} =   {2h}^{2}

\rm \implies\:\boxed{ \tt{ \: r \:  =  \:  \sqrt{2} \: h \:  \: }} -  -  - (3)

Now, we have

\rm :\longmapsto\:\dfrac{dV}{dh} = \dfrac{\pi}{3} \: [ {l}^{2} -  {3h}^{2}]

On differentiating both sides w. r. t. h, we get

\rm :\longmapsto\:\dfrac{ {d}^{2} V}{ {dh}^{2} } = \dfrac{\pi}{3} \: [0 - 6h] =  - 2\pi \: h \:  <  \: 0

\bf\implies \:V \: is \: maximum

Now, In triangle ABC,

\rm :\longmapsto\:tanx = \dfrac{r}{h}

\rm :\longmapsto\:tanx = \dfrac{ \sqrt{2}  \: h}{h}

\rm :\longmapsto\:tanx =  \sqrt{2}

\rm \implies\:\boxed{ \tt{ \: x \:  =   \: {tan}^{ - 1} \:  \sqrt{2} \:  \: }}

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Attachments:
Similar questions