Math, asked by pradeep8358, 1 year ago


if \: 2 +  \sqrt{5 \: } and \: 2 -  \sqrt{5 \: } are \: the \: zeros \: of \: a \: polynomial \: then \: find \: the \: polynomial




Answers

Answered by BrAinlyPriNcee
11
Solution:-

By Quadratic Formula,

 =  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  = 0 \\  \\ here \:  \: 2 +  \sqrt{5}  \:  \: is \:  \:  \alpha  +  \beta  \:  \: and \:  \:  \: 2 -  \sqrt{5}  \:  \:  \: is \:  \alpha  \beta  \\  \\  =  >  {x}^{2}   - ( 2  +  \sqrt{5}) x \:  + 2 -  \sqrt{5}
Similar questions