Math, asked by madhivi, 1 year ago


if \:  {2}^{x}  =  {7}^{ - y}  =  {14}^{z } \\ prove \: that \:  \frac{1}{x }  =  \frac{1}{y}  +  \frac{1}{z}

Answers

Answered by Vaibhavhoax
26
Heya!!

Here's your answer!!
________________________________________________________________________

Given,
 {2}^{x}  =  {7}^{ - y}  =  {14}^{z}  \\ let \:  {2}^{x}  =  {7}^{y}  =  {14}^{z}   \\ =  >  {2}^{x}  = k \: or \: 2 =    {k}^{ \frac{1}{x} }  \\  {7}^{ - y}  = k \:  \:  \: or \: 7 =   {k}^{ \frac{ - 1}{z} }  \\   {14}^{z}  = k \: or \: 14 =  {k}^{ \frac{1}{z} }  \\ now \:  \\ 14 = 2 \times 7 =  >  {k}^{ \frac{1}{z} }  =  {k}^{ \frac{1}{x} } . {k}^{ \frac{ - 1}{y} }  \\  =  >  {k}^{ \frac{1}{z} }   =  {k}^{ \frac{1}{x }  -  \frac{1}{y} }   \\  \\  =  >  \frac{1}{z}  =  \frac{1}{x}  -  \frac{1}{y}  =  >  \frac{1}{x}  =   \frac{1}{y}  +  \frac{1}{z}

________________________________________________________________________
Glad help you
it helps you,
thank you

@vaibhavhoax
#born with attitude
Similar questions