Math, asked by malathiponraj01, 9 days ago


if \: 2x - 3y - 4z = 0 \: then \: find \: 8x {3 - 27y {3 - 64z {3}^{} }^{} }^{}
if answer is correct surely mark has brainliest answer ✔️
plz don't spam guys❗​

Answers

Answered by sushantasantra365
1

Step-by-step explanation:

(2x)^3-(3y)^3-(4z)^3-3×2x×3y×4z

=(2x-3y-4z)(4x2+9y2+16z2-6xy-8xz+12yz)

=0

8x3-27y3-64z3=72xyz

Attachments:
Answered by 44PurpleOcean
1

Step-by-step explanation:

Use the formula

If a + b + c = 0a+b+c=0  \: then  \: a^{3} + b^{3} + c^{3} = 3abca^3 +b^3 +c^3 =3abc</p><p>

Proof

a+b+c = 0

as we know,

a³+b³+c³ - 3abc = (a+b+c)(a²+b²+c² -ab-bc-ac)

a³ + b³ + c³ -3abc = (0)(a²+b²+c²-ab-bc-ac)

a³+b³+c³ -3abc = 0

a³+b³+c³ = 3abc

Over here, 2x + (-3y) + (-4z) = 0

Then (2x)^{3} + (-3y)^{3} + (-4z)^{3} = 3*(2x)*(-3y)*(-4z) \\ (2x)^3 +(−3y)^3 +(−4z)^3</p><p> =3∗(2x)∗(−3y)∗(−4z) \\=&gt; 8x^{3} - 27y^{3} - 64z^{3} = 72xyz8x^3 −27y^3−64z^3 =72xyz \\

Please brainlist my answer, if helpful!

Similar questions