Math, asked by Anonymous, 10 months ago


if \: 3  {}^{x}  = 5 {}^{y}  = (75) {}^{z} \: show \: that \: z  =  \frac{xy}{2x + y}

Answers

Answered by aditisingh12468
7

Answer:

refer to the pic

Step-by-step explanation:

drop a thanks

Attachments:
Answered by BRAINLYADDICTOR
52

<font color="purple">

★FIND:

➡️\bold{z = \frac{xy}{2x + y}}

★GIVEN,

➡️\bold{3 {}^{x} = 5 {}^{y} = (75) {}^{z}}

★SOLUTION:

➡️\bold{3 {}^{x} = 5 {}^{y} = (75) {}^{z}}

➡️\bold{3^x=5^y=75^z=k} says

➡️\bold{3^x=k,\:5^y=k,\:75^z=k}

➡️\bold{3 = k {}^{1/x}, \: 5 = k {}^{1/ \: y}, \: 75 = k {}^{1/z} }

★NOW,

➡️\bold{75=3×5×5}

➡️\bold{k {}^{1/z}  = k {}^{1/x}  \times k {}^{1/y} \times k {}^{1/y}}

➡️\bold{k {}^{1/z}  = k {}^{1/x + 2/y}} \bold{(since \: a {}^{m} a {}^{n}  = a {}^{m + n})}

➡️\bold{1/z = 1/x + 2/y}

➡️\bold{1 /z= y + 2x/xy}

➡️\bold{z = \frac{xy}{2x + y}}

Similar questions