Math, asked by anu834868, 1 month ago


if  \:  {3}^{x + y }  = 81 \: and \:  {81}^{x - y}  = 3
then find the value of x and y​

Answers

Answered by xSoyaibImtiazAhmedx
2

Given:-

★ \:  \:  \: {3}^{x + y } = 81

 \implies \:{3}^{x + y}  =  {3}^{4}

\implies \bold{{x + y}  =  {4} \:  \:  -  -  -  - (1)}

And

★  \:  \:  \: {81}^{x - y} = 3

 \implies \:  {3}^{4(x - y)}  =  {3}^{1}

\implies \:  {4(x - y)}  = 1

\implies \:  \bold {{4x - 4y}  = 1 \:  \:  -  -  - (2)}

{ We will solve those equations by Substituting Method }

† From eq (1) ,

x = 4 - y ------------(3)

Putting the value of x in eq(2) , we get

4(4-y) - 4y = 1

16 - 4y - 4y = 1

8y = 15

\bold{\boxed{y \:\:=\frac{15}{8}}}

Now, putting the value of y in eq(3) , we get,

  \:  \:  \:  \: \bold {\rightarrow \: x = 4 -  \frac{15}{8} }

  \:  \:  \:  \: \bold {\rightarrow \: x =  \frac{32 - 15}{8} }

\:  \:  \:  \boxed{ \bold {\rightarrow \: x =  \frac{17}{8} }}

Hence ,

★ x → 17/8

★ y →15/8

Answered by galvanatorxx
0

Answer:

x= 17/8 y=15/8 this is your answer

Similar questions