Math, asked by kapilgehlawat43, 3 months ago


if \: 7sin {}^{2}  theta + 5cos {}^{2}theta  = 4 \: then \: evaluate  \: sectheta +  \csc \: theta

Answers

Answered by mathdude500
4

\begin{gathered}\begin{gathered}\bf\: Given-\begin{cases} &\sf{7 {sin}^{2}\theta + 5 {cos}^{2}\theta = 4} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: Find - \begin{cases} &\sf{sec\theta + cosec\theta}\end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \sf \:  {sin}^{2}x +  {cos}^{2}x = 1}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:7 {sin}^{2}\theta + 5 {cos}^{2}\theta = 4

\rm :\longmapsto\:7 {sin}^{2}\theta + 5(1 -  {sin}^{2}\theta) = 4

\rm :\longmapsto\:7 {sin}^{2}\theta + 5 -  5{sin}^{2}\theta = 4

\rm :\longmapsto\:2 {sin}^{2}\theta = 4 - 5

\rm :\longmapsto\:2 {sin}^{2}\theta = - \: 1

As squared number can never be negative,

So,

\bf\implies \:There \: is \: no \: real \: value \: of \: \theta

Additional Information :-

 \boxed{ \sf \:  {sec}^{2}x -  {tan}^{2}x = 1}

 \boxed{ \sf \:  {cosec}^{2}x -  {cot}^{2}x = 1}

 \boxed{ \sf \: cotx = \dfrac{1}{tanx}}

 \boxed{ \sf \: cosecx = \dfrac{1}{sinx}}

 \boxed{ \sf \: secx = \dfrac{1}{cosx}}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions