Math, asked by guptaananya2005, 1 month ago


If \: |a_1sinx +a_2sin2x +  a_3sin3x +  -  -  -  + a_nsinnx | \leqslant  |sinx|  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  for \: all \: x \in \: real \: numbers \: then \: prove \: that \:  |a_1 + 2a_2 + 3a_3 +  -  -  + na_n| \leqslant 1
Please don't spam.

Quality answer needed.

Moderators, Brainly stars , genius, please answer as earliest.

Thanks for all your support and cooperation.

Helps me alot in my studies. ​

Answers

Answered by prashant426
0

Answer:

\: \: \: \: \: \\ for \: all \: x \in \: real \: numbers \: then \: prove \: that \: |a_1 + 2a_2 + 3a_3 + - - + na_n| \leqslant 1[/tex]

Please don't spam.

Quality answer needed.

Moderators, Brainly stars , genius, please answer as earliest.

Thanks for all your support and cooperation.

Helps me alot in my studies.

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

 \sf \: |a_1sinx +a_2sin2x + a_3sin3x + - - - + a_nsinnx | \leqslant |sinx|

Let we assume that,

 \sf \: f(x) = a_1sinx +a_2sin2x + a_3sin3x + - - - + a_nsinnx

 \purple{\bf \implies\: |f(x)|  \leqslant  |sinx| }

On substituting x = 0, we get

\rm :\implies\: |f(0)|  \leqslant  |sin0|

\rm :\implies\: |f(0)|  \leqslant  |0|

\rm :\implies\: |f(0)|  \leqslant  0

\rm :\implies\: |f(0)|  =   0

\bf\implies \:f(0) = 0 -  -  - (1)

Also, as assume above

 \sf \: f(x) = a_1sinx +a_2sin2x + a_3sin3x + - - - + a_nsinnx

On differentiating both sides w. r. t x, we get

 \sf \: \dfrac{d}{dx}f(x) = \dfrac{d}{dx}\bigg [a_1sinx +a_2sin2x + a_3sin3x + - - - + a_nsinnx\bigg]

 \sf \: f'(x) = a_1cosx +2a_2cos2x + 3a_3cos3x + - - - + na_ncosnx

On substituting x = 0, we get

\red{\rm :\longmapsto\: \: f'(0) = a_1 +2a_2 + 3a_3 + - - - + na_n }

So,

\red{\rm :\longmapsto\: \:  |f'(0)| = \bigg | a_1 +2a_2 + 3a_3 + - - - + na_n \bigg |} -  -  - (1)

Now, We know that

By definition of differentiation,

\rm :\longmapsto\:f'(0) = \displaystyle\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}

\rm :\longmapsto\:f'(0) = \displaystyle\lim_{x \to 0} \frac{f(x) - 0}{x}

\red{\bigg \{ \because \:f(0) = 0 \bigg \}}

\rm :\longmapsto\:f'(0) = \displaystyle\lim_{x \to 0} \frac{f(x)}{x}

So,

\rm :\longmapsto\: | f'(0) |= \displaystyle\lim_{x \to 0}\bigg | \frac{f(x)}{x}\bigg |

\rm :\longmapsto\: | f'(0) |= \displaystyle\lim_{x \to 0}\bigg | \frac{f(x)}{x}\bigg | \leqslant \displaystyle\lim_{x \to 0}\bigg | \frac{sinx}{x}\bigg |

 \purple{ \{\bf  \because\: |f(x)|  \leqslant  |sinx| \} }

\rm :\longmapsto\: | f'(0) |\leqslant \displaystyle\lim_{x \to 0}\bigg | \frac{sinx}{x}\bigg |

We know,

 \boxed{ \bf{ \: \displaystyle\lim_{h \to 0} \frac{sinh}{h} = 1}}

So, using this,

\rm :\longmapsto\: | f'(0) |\leqslant 1

Hence,

From equation (1), we get

\red{\rm :\longmapsto\: \:  \bigg | a_1 +2a_2 + 3a_3 + - - - + na_n \bigg | \leqslant 1}

Hence, Proved

Similar questions