Math, asked by shanjheev, 5 days ago


 if \:  {a}^{2}  +  \frac{1}{ {a}^{2} } then \: find \: \: the \: value \: of \: a -  \frac{1}{a}
answer the question above ​

Answers

Answered by user0888
32

\huge{\text{$\pm\sqrt{x-2}$}}

\huge\text{\underline{\underline{Note}}}

*Check the equation again. I am assuming the first value as \text{$x$}.

\huge\text{\underline{\underline{Review}}}

\Large\text{\{Polynomials\}}

\large\text{$\longrightarrow$ Polynomial identity}

An equation that both the L.H.S and R.H.S are always equivalent is called an identity.

One of the important equations is the following identity.

\bold{Perfect\ square\ identity}

\text{$\cdots\longrightarrow\boxed{(A+B)^{2}=A^{2}+2AB+B^{2}}$}

\huge\text{\underline{\underline{Question}}}

If \text{$a^{2}+\dfrac{1}{a^{2}}=x$}, find the value of \text{$a-\dfrac{1}{a}$}.

\huge\text{\underline{\underline{Solution}}}

We know that -

\text{$\cdots\longrightarrow\left(a-\dfrac{1}{a}\right)^{2}=a^{2}-2+\dfrac{1}{a^{2}}$}

By substitution, -

\text{$\cdots\longrightarrow\left(a-\dfrac{1}{a}\right)^{2}=x-2$}

\text{$\cdots\longrightarrow a-\dfrac{1}{a}=\pm\sqrt{x-2}$}

\huge\text{\underline{\underline{Final answer}}}

Hence, the value of \text{$a-\dfrac{1}{a}$} is -

\text{$\cdots\longrightarrow\boxed{a-\dfrac{1}{a}=\pm\sqrt{x-2}}$}

\huge\text{\underline{\underline{Related question}}}

\text{$\boxed{\text{Question}}$}

If \text{$\dfrac{x}{x^{2}+x+1}=a$}, find the value of \dfrac{x^{2}}{x^{4}+x^{2}+1} in terms of \text{$a$}. \text{$(ax\neq0)$}

\text{$\boxed{\bold{Step\ 1.}}$}

\text{$\bold{Let\ -}$}

\text{$\cdots\longrightarrow\begin{cases} & \dfrac{x}{x^{2}+x+1}=a \\\\ & \dfrac{x^{2}}{x^{4}+x^{2}+1}=b \end{cases}$}

\text{$\bold{Taking\ reciprocal,}$}

\text{$\cdots\longrightarrow\dfrac{x^{2}+x+1}{x}=\dfrac{1}{a}$}

\text{$\bold{After\ division,}$}

\text{$\cdots\longrightarrow x+1+\dfrac{1}{x}=\dfrac{1}{a}$}

\text{$\bold{Manipulating,}$}

\text{$\cdots\longrightarrow x+\dfrac{1}{x}=\dfrac{1}{a}-1$}

\bold{Perfect\ square\ identity}

\text{$\cdots\longrightarrow \left(x+\dfrac{1}{x}\right)^{2}=\left(\dfrac{1-a}{a}\right)^{2}$}

\text{$\cdots\longrightarrow x^{2}+2+\dfrac{1}{x^{2}}=\dfrac{1-2a+a^{2}}{a^{2}}$}

\text{$\cdots\longrightarrow x^{2}+1+\dfrac{1}{x^{2}}=\dfrac{1-2a}{a^{2}}$}

\text{$\boxed{\bold{Step\ 2.}}$}

\text{$\bold{Then,\ -}$}

\text{$\cdots\longrightarrow\dfrac{x^{2}}{x^{4}+x^{2}+1}=b$}

\text{$\bold{Taking\ reciprocal,}$}

\text{$\cdots\longrightarrow\dfrac{x^{4}+x^{2}+1}{x^{2}}=\dfrac{1}{b}$}

\text{$\cdots\longrightarrow x^{2}+1+\dfrac{1}{x^{2}}=\dfrac{1}{b}$}

\text{$\boxed{\bold{Step\ 3.}}$}

\bold{Hence,\ -}

\text{$\cdots\longrightarrow\dfrac{1}{b}=\dfrac{1-2a}{a^{2}}$}

\text{$\bold{Taking\ reciprocal,}$}

\text{$\cdots\longrightarrow b=\dfrac{a^{2}}{1-2a}$}

\text{$\boxed{\bold{Final\ answer}}$}

\text{$\cdots\longrightarrow\boxed{\dfrac{x^{2}}{x^{4}+x^{2}+1}=\dfrac{a^{2}}{1-2a}}$}

Answered by phelper27
17

please check the attached file

Attachments:
Similar questions