Math, asked by devisaritha295, 1 year ago

if a=3+root5/2, then find the value of a^2+1/a^2

Answers

Answered by abhi178
24
a = ( 3 +√5)/2

then ,
1/a = (3-√5)/2

now,
a² + 1/a² = ( a +1/a)² -2
={( 3 +√5)/2+(3-√5)/2}² -2
={3}² -2
=7
Answered by pinquancaro
3

Answer:

a^2+\frac{1}{a^2}=\frac{55+21\sqrt5}{7+3\sqrt5}

Step-by-step explanation:

Given : If a=\frac{3+\sqrt5}{2}

To find : The value of a^2+\frac{1}{a^2}

Solution :

Expression  a^2+\frac{1}{a^2}

Substitute,  a=\frac{3+\sqrt5}{2}

=(\frac{3+\sqrt5}{2})^2+\frac{1}{(\frac{3+\sqrt5}{2})^2}

=\frac{9+5+6\sqrt5}{4}+\frac{1}{\frac{9+5+6\sqrt5}{4}}

=\frac{7+3\sqrt5}{2}+\frac{1}{\frac{7+3\sqrt5}{2}}

=\frac{7+3\sqrt5}{2}+\frac{2}{7+3\sqrt5}

=\frac{(7+3\sqrt5)(7+3\sqrt5)+4\times 4}{2(7+3\sqrt5)}

=\frac{49+45+42\sqrt5+16}{2(7+3\sqrt5)}

=\frac{110+42\sqrt5}{2(7+3\sqrt5)}

=\frac{2(55+21\sqrt5)}{2(7+3\sqrt5)}

=\frac{55+21\sqrt5}{7+3\sqrt5}

Therefore, a^2+\frac{1}{a^2}=\frac{55+21\sqrt5}{7+3\sqrt5}

Similar questions