Math, asked by pavansai14, 1 year ago


if \: a = 6 -  \sqrt{35} \: find \: the \: value \: of \: a {}^{2}  +  \frac{1}{a { }^{2} }

Answers

Answered by HarishAS
5
Hi friend, Harish here.

Here is your answer:

Given that,

a = 6 - √35.

To find,

a^{2} + \frac{1}{a^{2}}

Solution:

We know that:

a = 6 -  \sqrt{35}

So,

 \frac{1}{a} =  \frac{1}{6-  \sqrt{35} }   

(Now, rationalize the above equation).

To rationalize we must multiply and divide the number by it's conjugate.

Conjugate of the number is 6 + √35.

Then,

 \frac{1}{a}= \frac{1}{6- \sqrt{35} } \times  \frac{6+ \sqrt{35} }{6+ \sqrt{35} }

We know that (a+b) ( a-b) = a² - b².

So, (6 - √35) (6+√35) = 6² - (√35)² = 36 - 35 = 1.

Then,

 \frac{1}{a}=  \frac{6+ \sqrt{35} }{(6- \sqrt{35})(6+ \sqrt{35})}  =  \frac{6+ \sqrt{35}}{1}  = 6+ \sqrt{35}

(Now,Adding both a & 1/a )

Then,

(a+ \frac{1}{a}) = [(6- \sqrt{35}) + (6+ \sqrt{35})]

→ (a+ \frac{1}{a}) = 6 + 6

→ (a+ \frac{1}{a}) = 12

Now, square on both sides.

Then,

(a+ \frac{1}{a})^{2} = 12^{2}

(Use ( a + b)² = a² + b² + 2ab)

→ [a^{2} +  \frac{1}{a^{2}}+2(a)( \frac{1}{a})] = 144

→ (a^{2} + \frac{1}{a^{2}}+2) = 144

→ (a^{2} + \frac{1}{a^{2}})=144- 2

→ (a^{2} + \frac{1}{a^{2}})= 142

Therefore the value of it is 142.
_______________________________________________

Hope my answer is helpful to you.

HarishAS: Pls feel free to ask doubts
pavansai14: thanks
HarishAS: Welcome
Similar questions