Math, asked by simyoung, 11 months ago


if \: a \: \: and \:  \beta  \: are \: the \: zeroes \: of \: f(x) = 4x {}^{2} - 5x - 1 \: then \: evaluate \\ (i) \: a {}^{2}  +  \beta  {}^{2} \\ (ii){a}^{3} +  { \beta }^{3 }  \\ (iii) {a}^{4 }  + { \beta }^{4}  \\ (iv) {a}^{2}   -  { \beta }^{2}
도와주세요.

Answers

Answered by Anonymous
1

hope it helps you

sorry for bad picture quality

Attachments:

simyoung: !..
Anonymous: now you can solve 3rd one
Anonymous: you have alpha and beta
simyoung: ohh
Anonymous: yes
simyoung: gamshamaeyo..
simyoung: thanks for the gelp
simyoung: sorry help
Anonymous: what's that language
Anonymous: is it Korean
Answered by CoolestCat015
4

Answer:

\alpha^{2}+\beta^{2}=\dfrac{33}{16} \\ \\  \alpha^{3}+\beta^{3}=\dfrac{185}{64} \\ \\   \alpha^{4}+\beta^{4}=\dfrac{593}{156} \\ \\  \alpha^{2}-\beta^{2}=\dfrac{5\sqrt{33}}{16}

Step-by-step explanation:


f(x)=4x^{2}-5x-1 is the given equation. Its roots are \alpha and \beta

For a quadratic equation in 'x':-

Sum of roots, \alpha +\beta =\dfrac{-(-5)}{4}=\dfrac{5}{4}

Product of roots, \alpha \times \beta = \dfrac{-1}{4}

To evaluate the required expressions:-

1. \ \ \alpha ^{2} +\beta ^{2} = (\alpha +\beta )^{2}-2\alpha \beta \\ \\ \alpha^{2} +\beta ^{2} = \left( \dfrac{5}{4}\right)^{2}-2\left(\dfrac{-1}{4}\right) \\ \\= \dfrac{33}{16} \\ \\ \\2. \ \ \alpha ^{3} +\beta ^{3} = (\alpha +\beta )^{3}-3(\alpha +\beta)(\alpha \beta ) \\ \\ \alpha^{3} +\beta ^{3} = \left(\dfrac{5}{4}\right)^{3}-3 \ \left(\dfrac{5}{4}\right)\left(\dfrac{-1}{4}\right) \\ \\= \dfrac{185}{64} \\ \\ \\

3. \ \ \alpha ^{4} +\beta ^{4} = (\alpha +\beta )^{4}-2(\alpha\beta)^{2} \\ \\ \alpha^{4} +\beta ^{4} = \left(\dfrac{5}{4}\right)^{4}-2\left(\dfrac{-1}{4}\right)^{2} \\ \\= \dfrac{625}{256}- \dfrac{2}{16}\\ \\=\dfrac{593}{256} \\ \\ \\4. \ \ \ \alpha ^{2}-\beta^{2}=(\alpha +\beta )(\alpha -\beta ) \\ \\= \left(\dfrac{5}{4}\right) \times \dfrac{\sqrt{41}}{4} \\ \\ \\=\dfrac{5\sqrt{41}}{16}

Note:-

To calculate (\alpha -\beta ) use (\alpha -\beta )^{2}

Similar questions