Answers
Given:
To find:
Solution:
Squaring both side of given equation
Applying algebraic identity (a-b)²=a²+b²-2ab.
Now solving it
So the required answer is 38.
Answer:
Given:
\sf\hookrightarrow \bigg(a-\dfrac 1 a\bigg) =6↪(a−
a
1
)=6
\rule{240}{1}
To find:
\sf \hookrightarrow a^2+\bigg(\dfrac 1 a\bigg )^2↪a
2
+(
a
1
)
2
\rule{240}{1}
Solution:
Squaring both side of given equation
\hookrightarrow\sf\bigg( a -\dfrac 1 a\bigg)^2=(6)^2↪(a−
a
1
)
2
=(6)
2
Applying algebraic identity (a-b)²=a²+b²-2ab.
\hookrightarrow \sf (a)^2+\bigg( \dfrac 1 a\bigg)^2-2(a)\bigg(\dfrac 1 a\bigg)=(6)^2↪(a)
2
+(
a
1
)
2
−2(a)(
a
1
)=(6)
2
Now solving it
\hookrightarrow \sf a^2+ \dfrac 1 {a^2 }-2(\not a)\bigg(\dfrac 1 {\not a}\bigg)=36↪a
2
+
a
2
1
−2(
a)(
a
1
)=36
\hookrightarrow \sf a^2+ \dfrac 1 {a^2 }-2=36↪a
2
+
a
2
1
−2=36
\hookrightarrow \sf a^2+ \dfrac 1 {a^2 }=36+2↪a
2
+
a
2
1
=36+2
\hookrightarrow \sf a^2+ \dfrac 1 {a^2 }=38↪a
2
+
a
2
1
=38
\boxed{\blue{\hookrightarrow \sf a^2+ \bigg( \dfrac 1 {a }\bigg)^2=38}}
↪a
2
+(
a
1
)
2
=38
So the required answer is 38.