Math, asked by jit3011, 3 months ago


if \: \:a+\frac{1}{a}=\sqrt{3}  \:  \: then \: what \: is \: the \: value \: of \:  {a}^{30}  +  {a}^{24}  +  {a}^{18}  +  {a}^{12}  +  {a}^{6}  + 1 \:

Answers

Answered by UtsavPlayz
1

a +  \dfrac{1}{a}  =  \sqrt{3}

Squaring Both Sides,

 {a}^{2}  +  \dfrac{1}{ {a}^{2} }   + 2= 3

 {a}^{2}  +  \dfrac{1}{ {a}^{2} }  = 1

Cubing Both Sides,

 {a}^{6}  +  \dfrac{1}{ {a}^{6} }  + 3 \times   {a}^{2}  \times  \dfrac{1}{ {a}^{2} } ( {a}^{2}  +  \dfrac{1}{ {a}^{2} } ) = 1 \\

 {a}^{6}  +  \dfrac{1}{ {a}^{6} }  =  - 2

Hence,

 {a}^{6}  =  - 1

To Find:

 {a}^{30}  +  {a}^{24}  +  {a}^{18}  +  {a}^{12}  +  {a}^{6}  + 1 \\  = ( {a}^{6} ) ^{5}  +  ({a}^{6} ) ^{4}  + (  {a}^{6} ) ^{3}  +(  {a}^{6} ) ^{2}  + ( {a}^{6} ) ^{1}  + ( {a}^{6} ) ^{0}  \\  =  {( - 1)}^{5}  + ( - 1) ^{4}  + ( - 1) ^{3}  + ( - 1) ^{2}  + ( - 1) ^{1}  + ( - 1) ^{0}  \\  =  - 1 + 1 - 1 + 1 - 1 + 1 = 0

Please Follow♥️

Similar questions