Math, asked by rajputneha6512, 1 year ago

[tex] If A=\left[\begin{array}{ccc}Cos α &sin α\\-sin α& cos α\end{array}\right], Prove AAᵀ=I. Deduce A⁻¹ =Aᵀ. [\tex]

Answers

Answered by hukam0685
0

Step-by-step explanation: If

  A=\left[\begin{array}{ccc}cos \alpha &sin \alpha\\-sin \alpha& cos \alpha\end{array}\right]

To find the transpose,we know that columns and rows are interchanged

  A^T=\left[\begin{array}{ccc}cos \alpha &-sin \alpha\\sin \alpha& cos \alpha\end{array}\right]

Now multiply both

 AA^T=\left[\begin{array}{ccc}cos \alpha &sin \alpha\\-sin \alpha& cos \alpha\end{array}\right] \times\left[\begin{array}{ccc}cos \alpha &-sin \alpha\\sin \alpha& cos \alpha\end{array}\right]

 AA^T=\left[\begin{array}{ccc}cos^2 \alpha+sin^2 \alpha &cos \alpha\:sin \alpha-cos \alpha\:sin \alpha\\-sin \alpha cos \alpha +cos \alpha\:sin \alpha & cos^2 \alpha+sin^2 \alpha\end{array}\right]

 AA^T=\left[\begin{array}{ccc}1 &0\\0& 1\end{array}\right]\\\\AA^T=I

Hence proved.

Now to Deduce A⁻¹ =Aᵀ

Determinant of A

cos^2\alpha+sin^2 \alpha=1\\\\A^{-1}=\frac{A^T}{|A|}\\\\A^{-1}=\left[\begin{array}{ccc}cos \alpha &-sin \alpha\\sin \alpha& cos \alpha\end{array}\right]

so,

A^{-1}=A^T\\\\

Hence proved.

Hope it helps you.

Similar questions