Math, asked by AkashK1234, 1 year ago

 If A=\left[\begin{array}{ccc}Cos α &sin α\\-sin α& cos α\end{array}\right], Prove AAᵀ=I. Deduce A⁻¹ =Aᵀ.

Answers

Answered by rohitkumargupta
1
HELLO DEAR,

A = \left[\begin{array}{ccc}Cos\alpha&sin\alpha\\-sin \alpha& cos\alpha \end{array}\right]

A . A' = \left[\begin{array}{cc}Cos\alpha&sin\alpha\\-sin \alpha& cos\alpha \end{array}\right] . \left[\begin{array}{cc}Cos\alpha&-sin\alpha\\sin \alpha& cos\alpha \end{array}\right]

= \left[\begin{array}{cc}(cos\alpha.cos\alpha + sin\alpha.sin\alpha)&(-cos\alpha.sin\alpha + sin\alpha.cos\alpha)\\(-sin\alpha.cos\alpha + cos\alpha.sin\alpha)&(sin\alpha.sin\alpha + cos\alpha.cos\alpha)\end{array}\right]

= \left[\begin{array}{cc}1&0\\0&1\end{array}\right] = I

I HOPE ITS HELP YOU DEAR,
THANKS
Answered by hukam0685
0
Dear Student,

Solution:

 If A=\left[\begin{array}{ccc}Cos \alpha &sin \alpha\\-sin \alpha& cos\alpha \end{array}\right]

so A' =  \left[\begin{array}{ccc}Cos \alpha &-sin \alpha\\sin \alpha& cos\alpha \end{array}\right]

A.A' =  \left[\begin{array}{ccc}Cos^{2} \alpha +Sin ^{2} \alpha&-Cos \alpha \:sin \alpha+Cos \alpha \:sin \alpha\\Cos \alpha \:sin \alpha-Cos \alpha \:sin \alpha& Cos^{2} [\alpha] +Sin ^{2} [\alpha \end{array}\right]

As we know that

 {sin}^{2} \alpha + {cos}^{2} \alpha = 1

A.A'=  \left[\begin{array}{ccc}1 &0\\0&1 \end{array}\right] \:= I

Hope it helps you
Similar questions