Math, asked by dishajain400, 1 month ago

If \: \alpha \: and \: \beta \: are \: the \: zeroes \: of \: the \: polynomial \: f(x) = x2 - P(x +1) - c  then\ \ \ \ ( \alpha + 1)( \beta + 1) =
Answer with explanation ​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

f(x) =  {x}^{2}  - p(x + 1) - c

 \implies \: f(x) =  {x}^{2}  - px  - p - c

 \implies \: f(x) =  {x}^{2}  - px  - (p  +  c)

Now,

  \sf { \rarr \: sum \: of \: roots,} \: ( \alpha   + \beta ) =  \frac{  - (- p)}{1}  = p \\

  \sf { \rarr \: product \: of \: roots,} \: ( \alpha  \beta ) =  \frac{   - (p + c)}{1}  =  - (p + c) \\

So,

( \alpha + 1)(  \beta  + 1) =  \alpha  \beta  +  \alpha +   \beta  + 1 \\

 \implies \: ( \alpha + 1)(  \beta  + 1) =   - p - c  + p  + 1 \\

 \implies \: ( \alpha + 1)(  \beta  + 1) =   - c   + 1 \\

 \implies \: ( \alpha + 1)(  \beta  + 1) =  1 - c   \\

Similar questions