Math, asked by Anonymous, 4 months ago


if \:  \alpha  \: and \:  \beta  \: are \: the \: zeroes \: of \: the \:  \\ polynomials \: ax {}^{2}  + bx \:  + c. \: then \: \: \\ find \: the \: other \: polynomial \:  \\ whose \: zeroes \: are \:  \frac{ \alpha  {}^{2} }{ \beta }  \: and \:  \frac{ \beta  {}^{2} }{ \alpha } .
note \:  =  >  \\ answer \: of \: these \: question \:  =  \\ x {}^{2}  +   \frac{b}{a {}^{2} c} (b {}^{2}  - 3ac)x +  \frac{c}{a}
please answer step by step, briefly..
for your help I provided you the answer.​

Attachments:

Answers

Answered by mathdude500
1

\bf\large \underbrace \orange{Solution:}

\bf \: \: since \: \alpha \: and \: \beta \: are \: the \: zeroes \: of \: the \:

\bf \:polynomials \:  \: ax {}^{2} + bx \: + c \: \: then

\bf\implies \: \alpha  +  \beta  =  - \dfrac{b}{a}

\bf\implies \: \alpha  \beta  = \dfrac{c}{a}

★ Now, Consider

\bf \:S = \dfrac{ { \alpha }^{2} }{ \beta }  + \dfrac{ { \beta }^{2} }{ \alpha }

\bf\implies \:S = \dfrac{ { \alpha }^{3} +  { \beta }^{3}  }{ \alpha  \beta }

\bf\implies \:S = \dfrac{ {( \alpha  +  \beta )}^{3} - 3 \alpha  \beta ( \alpha  +  \beta ) }{ \alpha  \beta }

\bf\implies \:S = \dfrac{ { - (\dfrac{b}{a} })^{3} + 3\dfrac{c}{a} \times \dfrac{b}{a}   }{\dfrac{c}{a} }

\bf\implies \:S = \dfrac{ (-  {b}^{3  } + 3abc) }{ {a}^{3} }  \times \dfrac{a}{c}

\bf\implies \:S = \dfrac{ -  {b}^{3} + 3abc }{c {a}^{2} }

\bf\implies \:S = \dfrac{ - b( {b}^{2} - 3ac) }{c {a}^{2} }

★ Now, Consider

\bf \:P = \dfrac{ { \alpha }^{2} }{ \beta }  \times \dfrac{ { \beta }^{2} }{ \alpha }

\bf\implies \:P =  \alpha  \beta  = \dfrac{c}{a}

★ So, required quadratic polynomial is

\bf\implies f(x) = \: {x}^{2}  - Sx + P

\bf\implies \: {x}^{2}  - \dfrac{ - b( {b}^{2} - 3ac) }{c {a}^{2} } x + \dfrac{c}{a}

\bf\implies \: {x}^{2}  + \dfrac{  b( {b}^{2} - 3ac) }{c {a}^{2} } x + \dfrac{c}{a}

___________________________________________

Similar questions