Math, asked by furiouslegend9632, 1 month ago


if \:  \alpha  \: and \:  \beta  \: are \: the \: zeroes \: of \: the  \\ quadratic \: polynomial \\ f(x) =  {x}^{2} - 4x + 3 \\ find \: the \: value \: of \:  { \alpha }^{4} { \beta }^{2} +  { \alpha }^{2} { \beta }^{4}

Answers

Answered by amankumaraman11
2

f(x) = x² - 4x + 3

It's zeroes are α and β.

From relationship of zeroes and coefficients of a quadratic polynomial, we have,

  • α + β = 4
  • αβ = 3

Now,

 \large \implies \tt  α + β = 4 \\  \tiny{ \rm \: squaring \: both \: sides} \\ \implies \tt {α}^{2}  +  {β}^{2}  + 2αβ = 4 \\  \\  \implies \tt {α}^{2}  +  {β}^{2}  = 4 - 2αβ \\  \tiny{ \rm putting \: the \: known \: values}\\  \implies \tt {α}^{2}  +  {β}^{2} = 4 - 3 \\  \\ \implies \tt {α}^{2}  +  {β}^{2} = 1

Thus,

→ α⁴β² + α²β⁴

→ α²β²(α² + β²)

→ (αβ)² × (α² + β²)

→ (3)² × (1)

→ 9 × 1 = 9

Similar questions