Math, asked by rocksriwin, 6 hours ago


if \:  \alpha  \: belongs \: to \: ({\pi \:  \frac{3\pi}{2} }) \: then \:   { \tan }^{ - 1}( \tan( \alpha ))
is equal to



Answers

Answered by amitabha184
0

Answer:

if \: \alpha \: belongs \: to \: ({\pi \: \frac{3\pi}{2} }) \: then \: { \tan }^{ - 1}( \tan( \alpha ))ifαbelongsto(π

2

)thentan

−1

(tan(α))

is equal to

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given inverse Trigonometric function is

\rm :\longmapsto\: {tan}^{ - 1} (tan \alpha )

and

\rm :\longmapsto\: \alpha  \:  \in \: \bigg(\pi, \: \dfrac{3\pi}{2}  \bigg)

We know,

\boxed{\tt{  {tan}^{ - 1} (tanx) = x \:  \:  \: if \: x \:  \in \: \bigg( - \dfrac{\pi}{2}, \: \dfrac{\pi}{2} \bigg) }}

So,

\rm :\longmapsto\: \alpha  \:  \cancel \in \: \bigg( - \dfrac{\pi}{2}, \: \dfrac{\pi}{2} \bigg)

Now,

\rm :\longmapsto\:\pi <  \alpha  < \dfrac{3\pi}{2}

\rm :\longmapsto\: - \pi  >  -   \alpha   >  -  \dfrac{3\pi}{2}

\rm :\longmapsto\:\pi - \pi  >\pi  -   \alpha   > \pi -  \dfrac{3\pi}{2}

\rm :\longmapsto\:0 > \pi -  \alpha  >  - \dfrac{\pi}{2}

\rm :\longmapsto\: - \dfrac{\pi}{2} < \pi -  \alpha  < 0

Now,

\rm :\longmapsto\:tan(\pi -  \alpha ) =  - tan \alpha

\bf\implies \:tan \alpha  =  - tan(\pi -  \alpha ) = tan( \alpha  - \pi)

Therefore,

\rm :\longmapsto\: {tan}^{ - 1} (tan \alpha )

\rm \:  =  \:  {tan}^{ - 1} [tan( \alpha -  \pi)]

\rm \:  =  \:  \alpha  - \pi

Hence,

\rm\implies \:\boxed{\tt{ \rm \:  {tan}^{ - 1} (tan \alpha ) =  \:  \alpha  - \pi \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{  {tan}^{ - 1} (tanx) = x \:  \:  \: if \: x \:  \in \: \bigg( - \dfrac{\pi}{2}, \: \dfrac{\pi}{2} \bigg) }}

\boxed{\tt{  {sin}^{ - 1} (sinx) = x \:  \:  \: if \: x \:  \in \: \bigg[- \dfrac{\pi}{2}, \: \dfrac{\pi}{2} \bigg] }}

\boxed{\tt{  {cos}^{ - 1} (cosx) = x \:  \:  \: if \: x \:  \in \: \bigg[0, \: \pi\bigg] }}

Similar questions