Math, asked by guptaananya2005, 11 days ago


if \:  \alpha \:   \beta \:   \gamma  \: are \: roots \: of \:  {x}^{3} -  {3x}^{2}  + 3x + 7 = 0
and

omega is cube roots of unity, then

( \alpha - 1)(  \beta  - 1) + ( \beta  - 1)( \gamma  - 1)( \gamma - 1)(  \alpha - 1) =

EVALUATE the above

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ

❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ

❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ... best users.

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:1,\omega , {\omega }^{2}  \: are \: cube \: roots \: of \: unity.

So,

\boxed{\tt{  {\omega }^{3} = 1 \: }}

and

\boxed{\tt{ 1 + \omega  +  {\omega }^{2}  = 0 \: }}

Also, given that,

\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: the \: roots \: of \:  {x}^{3} -  {3x}^{2} + 3x + 7 = 0

Consider,

\rm :\longmapsto\: {x}^{3} -  {3x}^{2} + 3x + 7 = 0

\rm :\longmapsto\: {x}^{3} -  {3x}^{2} + 3x =  - 7

\rm :\longmapsto\: {x}^{3} -  {3x}^{2} + 3x - 1 =  - 7 - 1

\rm \implies\: {(x - 1)}^{3} =  - 8

\rm \implies\:x - 1 =  {\bigg( - 8\bigg) }^{\dfrac{1}{3} }

\rm \implies\:x - 1 =   - 2{\bigg(1\bigg) }^{\dfrac{1}{3} }

\rm \implies\:x - 1 =  - 2, \:  - 2\omega , \:  -  {2\omega }^{2}

As, it is given that

\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: the \: roots \: of \:  {x}^{3} -  {3x}^{2} + 3x + 7 = 0

So, Let assume that

\rm :\longmapsto\: \alpha  - 1 =  - 2

\rm :\longmapsto\: \beta  - 1 =  - 2\omega

\rm :\longmapsto\: \gamma  - 1 =  -  {2\omega }^{2}

Now, Consider

\rm :\longmapsto\:( \alpha - 1)(\beta  - 1) + ( \beta  - 1)( \gamma  - 1) + (\gamma - 1)(  \alpha  - 1)

\rm \:  =  \: ( - 2)( - 2\omega ) + ( - 2\omega )( { - 2\omega }^{2}) + ( { - 2\omega }^{2})( - 2)

\rm \:  =  \:  {4\omega }+  {4\omega }^{3} +  {4\omega }^{2}

\rm \:  =  \: 4\omega (1 +  {\omega }^{2}  + \omega )

\rm \:  =  \: 4\omega  \times 0

\rm \:  =  \: 0

Hence,

\boxed{\tt{ ( \alpha - 1)(\beta  - 1) + ( \beta  - 1)( \gamma  - 1) + (\gamma - 1)(  \alpha  - 1) = 0}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Cube Roots of unity

\rm :\longmapsto\:x  =  {\bigg(1\bigg) }^{\dfrac{1}{3} }

\rm :\longmapsto\: {x}^{3} = 1

\rm :\longmapsto\: {x}^{3} - 1 = 0

\rm :\longmapsto\:(x - 1)( {x}^{2} + x + 1) = 0

\bf\implies \:x = 1

Or

\rm :\longmapsto\: {x}^{2} + x + 1 = 0

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ {1}^{2}  - 4(1)(1)} }{2(1)}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ 1 - 4} }{2}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ - 3} }{2}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  i\sqrt{3} }{2}

\rm :\longmapsto\:x = \dfrac{ - 1 \:   +  \:  i\sqrt{3} }{2}  \:  \: or \:  \: \dfrac{ - 1 \:  -   \:  i\sqrt{3} }{2}

\rm \implies\:x = 1 \:  \: or \:  \: \dfrac{ - 1 \:   +  \:  i\sqrt{3} }{2}  \:  \: or \:  \: \dfrac{ - 1 \:  -   \:  i\sqrt{3} }{2}

\bf\implies \:x = 1 \:  \: or \:  \: \omega  \:  \: or \:  \:  {\omega }^{2}

where,

\rm :\longmapsto\:\omega  = \dfrac{ - 1 \:   +  \:  i\sqrt{3} }{2}

and

\rm :\longmapsto\: {\omega }^{2} = \dfrac{ - 1 \:   -   \:  i\sqrt{3} }{2}

Similar questions