Solve this with explanation.
Don't spamming on it, please.
If you don't know the answer, please don't post irrelevant things.
Otherwise I will report.
Answers
Given : cos x + cosy = a
sinx + siny = b
To Find : Prove that Cos(x + y) = (a² - b² )/ (a² + b²)
Solution:
cos x + cosy = a
=> cos²x + cos² y + 2cosxcosy = a² Eq1
sinx + siny = b
=> sin²x + sin² y + 2sinxsiny = b² Eq2
Adding both
1 + 1 + 2(cosxcosy + sinxsiny) = a² + b²
=> 2 ( 1 + cos(x - y) ) = a² + b² Eq3
Eq1 - Eq2
=> cos²x - sin²x + cos² y - sin² y+ 2cosxcosy - 2sinxsiny =a² - b²
=> cos2x + cos2y + 2(cos(x + y)) = a² - b²
=> 2Cos(x + y)cos(x - y) + 2(cos(x + y)) = a² - b²
=> 2Cos(x + y) (Cos(x - y) + 1) = a² - b²
=> Cos(x + y) * 2(1 + cos(x - y) ) = a² - b²
from Eq3
=> Cos(x + y) ( a² + b²) = a² - b²
=> Cos(x + y) = (a² - b² )/ (a² + b²)
QED
Hence proved
Learn More:
If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in
brainly.in/question/7871635
if A cos - B sin = C , prove that A sin + B cos = +- whole root (A^2 + B ...
brainly.in/question/8399548
Answer:
Given : cos x + cosy = a
sinx + siny = b
To Find : Prove that Cos(x + y) = (a² - b² )/ (a² + b²)
Solution:
cos x + cosy = a
=> cos²x + cos² y + 2cosxcosy = a² Eq1
sinx + siny = b
=> sin²x + sin² y + 2sinxsiny = b² Eq2
Adding both
1 + 1 + 2(cosxcosy + sinxsiny) = a² + b²
=> 2 ( 1 + cos(x - y) ) = a² + b² Eq3
Eq1 - Eq2
=> cos²x - sin²x + cos² y - sin² y+ 2cosxcosy - 2sinxsiny =a² - b²
=> cos2x + cos2y + 2(cos(x + y)) = a² - b²
=> 2Cos(x + y)cos(x - y) + 2(cos(x + y)) = a² - b²
=> 2Cos(x + y) (Cos(x - y) + 1) = a² - b²
=> Cos(x + y) * 2(1 + cos(x - y) ) = a² - b²
from Eq3
=> Cos(x + y) ( a² + b²) = a² - b²
=> Cos(x + y) = (a² - b² )/ (a² + b²)
QED
Hence proved
Learn More:
If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in
brainly.in/question/7871635
if A cos - B sin = C , prove that A sin + B cos = +- whole root (A^2 + B ...
brainly.in/question/8399548