Math, asked by TrustedAnswerer19, 2 months ago

if, \:  \:   \:\:\: \cos \: x \:  +  \cos \: y = a  \\  \:  \:  \:  and \:\: \:\: \sin \: x   + \sin \: y \:  = b \\ then \: prove \: that, \:  \:  \\  \cos(x + y)  =  \frac{ {a}^{2}  -  {b}^{2} }{ {a}^{2}  +  {b}^{2} }

Solve this with explanation.

Don't spamming on it, please.
If you don't know the answer, please don't post irrelevant things.
Otherwise I will report. ​

Answers

Answered by amitnrw
20

Given :  cos x + cosy  = a

sinx + siny  = b

To Find : Prove that Cos(x + y) = (a² -  b²   )/  (a² + b²)

Solution:

cos x + cosy  = a

=> cos²x + cos² y  + 2cosxcosy   = a²   Eq1

sinx + siny  = b

=> sin²x + sin² y  + 2sinxsiny   = b²   Eq2

Adding both

1 + 1 + 2(cosxcosy + sinxsiny) = a² + b²

=> 2 ( 1 + cos(x - y) ) =  a² + b²    Eq3

Eq1 - Eq2

=> cos²x  - sin²x + cos² y -  sin² y+ 2cosxcosy   -  2sinxsiny   =a² -  b²    

=> cos2x  + cos2y  + 2(cos(x + y)) = a² -  b²  

=> 2Cos(x + y)cos(x - y)  +  2(cos(x + y)) = a² -  b²  

=>  2Cos(x + y) (Cos(x - y)  + 1)  = a² -  b²  

=> Cos(x + y)  * 2(1 + cos(x - y) )  =  a² -  b²  

from Eq3

=> Cos(x + y) ( a² + b²)  =  a² -  b²  

=> Cos(x + y) = (a² -  b²   )/  (a² + b²)

QED

Hence proved

Learn More:

If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in

brainly.in/question/7871635

if A cos - B sin = C , prove that A sin + B cos = +- whole root (A^2 + B ...

brainly.in/question/8399548

Answered by brainlyvirat187006
5

Answer:

Given :  cos x + cosy  = a

sinx + siny  = b

To Find : Prove that Cos(x + y) = (a² -  b²   )/  (a² + b²)

Solution:

cos x + cosy  = a

=> cos²x + cos² y  + 2cosxcosy   = a²   Eq1

sinx + siny  = b

=> sin²x + sin² y  + 2sinxsiny   = b²   Eq2

Adding both

1 + 1 + 2(cosxcosy + sinxsiny) = a² + b²

=> 2 ( 1 + cos(x - y) ) =  a² + b²    Eq3

Eq1 - Eq2

=> cos²x  - sin²x + cos² y -  sin² y+ 2cosxcosy   -  2sinxsiny   =a² -  b²    

=> cos2x  + cos2y  + 2(cos(x + y)) = a² -  b²  

=> 2Cos(x + y)cos(x - y)  +  2(cos(x + y)) = a² -  b²  

=>  2Cos(x + y) (Cos(x - y)  + 1)  = a² -  b²  

=> Cos(x + y)  * 2(1 + cos(x - y) )  =  a² -  b²  

from Eq3

=> Cos(x + y) ( a² + b²)  =  a² -  b²  

=> Cos(x + y) = (a² -  b²   )/  (a² + b²)

QED

Hence proved

Learn More:

If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in

brainly.in/question/7871635

if A cos - B sin = C , prove that A sin + B cos = +- whole root (A^2 + B ...

brainly.in/question/8399548

꧁༒BRAINLYVIRAT187006༒꧂

Similar questions