Math, asked by piyali5480, 20 hours ago


 if \: { \cot }^{4} a -   { \cot }^{2}a = 1 \\ then \\ prove \ it \: \\      { \cos }^{4} a +  { \cos}^{2}a  = 1 \:  \\
this is the math of trigonometry.​

Answers

Answered by mathdude500
18

\large\underline{\sf{Solution-}}

Given that,

\rm \:  {cot}^{4}a - {cot}^{2}a = 1 \\

\rm \:  {cot}^{2}a\bigg({cot}^{2}a - 1\bigg) = 1 \\

can be further rewritten as

\rm \: \dfrac{ {cos}^{2} a}{ {sin}^{2} a} \bigg(\dfrac{ {cos}^{2} a}{ {sin}^{2}a}  - 1 \bigg)  = 1 \\

\rm \: \dfrac{ {cos}^{2} a}{ {sin}^{2} a} \bigg(\dfrac{ {cos}^{2} a -  {sin}^{2}a}{ {sin}^{2}a} \bigg)  = 1 \\

\rm \:  {cos}^{2}a( {cos}^{2}a -  {sin}^{2}a) =  {( {sin}^{2} a)}^{2}  \\

can be further rewritten as

\rm \:  {cos}^{2}a\bigg[{cos}^{2}a - (1 -  {cos}^{2}a)\bigg] =  {(1 -  {cos}^{2} a)}^{2}  \\

\rm \:  {cos}^{2}a\bigg[{cos}^{2}a -1 +   {cos}^{2}a\bigg] =  1 +  {cos}^{4}a -  {2cos}^{2} a\\

\rm \:  {cos}^{2}a\bigg[2{cos}^{2}a -1 \bigg] =  1 +  {cos}^{4}a -  {2cos}^{2} a\\

\rm \:  2{cos}^{4}a - {cos}^{2}a =  1 +  {cos}^{4}a -  {2cos}^{2} a\\

\rm \:  2{cos}^{4}a - {cos}^{2}a -  {cos}^{4}a  + {2cos}^{2} a = 1\\

\rm\implies \:\rm \:  {cos}^{4}a + {cos}^{2}a = 1\\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:cotx =  \frac{cosx}{sinx} \: }} \\

\boxed{ \rm{ \: {sin}^{2}x +  {cos}^{2}x = 1 \: }} \\

\boxed{ \rm{ \: {(x - y)}^{2} =  {x}^{2} +  {y}^{2} - 2xy \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 }\\\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by MysticSohamS
15

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: prove \: that :  \\ cos {}^{4} a + cos {}^{2} a = 1 \\  \\ given \: that \\ cot {}^{4} a - cot {}^{2} a = 1 \\  \\ cot {}^{2} a(cot {}^{2} a - 1) = 1 \\  \\ cot {}^{2}a  - 1 =  \frac{1}{cot {}^{2} a}  \\  \\ cot {}^{2} a = tan {}^{2} a + 1 \\  \\  \frac{cos {}^{2} }{sin {}^{2}a }  = sec {}^{2} a \\  \\  \frac{cos {}^{2} a}{sin {}^{2}a }  =  \frac{1}{cos {}^{2} a}  \\  \\ cos {}^{4}a = sin {}^{2}  a \\  \\ cos {}^{4} a = 1 - cos {}^{2} a \\  \\ cos {}^{4} a + cos {}^{2} a = 1

Similar questions