Math, asked by mdafzalkhanips, 1 month ago


if \:  \cot \: a +  \frac{1}{ \cot \: a }  = 2. \: find \: the \: value \: of \:  ( \cot {}^{2} a +  \frac{1}{ \cot {}^{2} a } )

Answers

Answered by TrustedAnswerer19
5

Given,

 \rm \: cot \: a +  \frac{1}{cot \: a}  = 2

we have to find :

 \rm {cot}^{2}  \: a +  \frac{1}{ {cot}^{2}  \: a}

Solution :

we know that,

 {x}^{2}  +  {y}^{2}  = (x + y) {}^{2}   -  2xy

Now,

{ \boxed{\boxed{\begin{array}{cc} \small{ \rm \:  {cot}^{2}  \: a +  \frac{1}{ {cot}^{2} \: a }  =  {(cot}^{}  \: a +  \frac{1}{cot \:a}  \:) {}^{2}  - 2 \times cot \: a \times  \frac{1}{cot \: a}  }\\  \\  \rm =  {2}^{2}  - 2 \\  \\  = 4 - 2 \\  \\  = 2 \\  \\  \therefore \:  \rm \:  {cot}^{2}  \: a +  \frac{1}{ {cot}^{2} \: a }  = 2\end{array}}}}

Similar questions