Math, asked by omaimaansari15, 2 months ago


if \:  \frac{1}{a}  = 2 \\  \\  sho w \: that \\
i)
 {a}^{2}  +  \frac{1}{ {a}^{2} }  = 6
ii)
 {a}^{4}   +  \frac{1}{ {a}^{4} }  = 34
iii)
(a +  \frac{1}{a} ) ^{2}  = 8
please show step by step instructions
spam answers will be reported​

Answers

Answered by OtakuSama
35

Question:-

\sf{If \: a -  \dfrac{1}{a}  = 2 \: show \: that}

\sf{ i) \: {a}^{2}  +  \dfrac{1}{ {a}^{2} }  = 2}

\sf{ ii) \: {a}^{4}  +  \dfrac{1}{ {a}^{4} }  = 34} \\  \sf{iii) \:  {(a +  \frac{1}{a}) }^{2} }  = 8 \\  \\

Required Answer:-

Given:-

 \\  \sf{ \rightarrow{a -  \dfrac{1}{a}  = 2}} \\  \\

Formula Applied:-

 \\  \sf{ \rightarrow{ {a}^{2}  +  {b}^{2}  = (a - b) {}^{2}  + 2ab}} \\ \\  \sf{ \rightarrow{ {a}^{2}   +  {b}^{2}  = (a  +  b) {}^{2}   -  2ab}} \\ \\  \sf{ \rightarrow{(a + b) {}^{2}  = (a - b) {}^{2}  + 4ab}} \\  \\

Solution:-

   \sf{ i) \: {a}^{2}  +  \dfrac{1}{ {a}^{2} }  = 2} \\ \\ \sf{ \bold{{a}^{2}  +  \dfrac{1}{ {a}^{2} }}} \\  \\  \sf{ \implies{ {(a)}^{2}   +   {( \dfrac{1}{a}} )}^{2} }

Applying formula:-

\\  \sf{ \implies{ {(a -   \dfrac{1}{a} ) {}^{2}  + 2 \times  \cancel{a } \times  \frac{1}{ \cancel{a}} }}}

Substituting the value:-

\\  \sf{ \implies{(2) {}^{2}   +2}}

\\  \sf{ \implies{ \red{6}}}

Hence, L. S. = R. S. (Showed!)

\sf{ ii) \: {a}^{4}  +  \dfrac{1}{ {a}^{4} }  = 34} \\ \\  \sf{ \bold{  {a}^{4}  +  \dfrac{1}{ {a}^{4} }}}\\ \\ \sf{ \implies{ ({a}^{2} ) {}^{2}  + ( \frac{1}{ {a}^{2} } ) {}^{2} }}

Applying formula:-

\\  \sf{ \implies{( {a}^{2}  +  \dfrac{1}{ {a}^{2} } ) {}^{2}  - 2 \times  \cancel{ {a}^{2} } \times  \dfrac{1}{ \cancel{ {a}^{2} }}}}

\\  \sf{ \implies{ \{( {a}   -   \dfrac{1}{ {a} } ) {}^{2}     + 2\times  \cancel{ {a} } \times  \dfrac{1}{ \cancel{ a}}}}  \} {}^{2}  - 2

Substituting the value:-

\\  \sf{ \implies{( {2}^{2}  + 2) {}^{2}  - 2}}

\\  \sf{ \implies{ {6}^{2}  - 2}}

\\  \sf{ \implies{ \red{34}}}

Hence, L. S. = R. S. (Showed!)

\sf{iii) \:  {(a +  \frac{1}{a}) }^{2} }  = 8 \\  \\

 \\  \sf{ \bold{ {(a +  \frac{1}{a}) }^{2} }}

Applying formula:-

 \\  \sf{ \implies{(a -  \frac{1}{a} ) {}^{2}  + 4 \times  \cancel{a} \times   \dfrac{1}{ \cancel{a}}}}

Substituting the value:-

 \\  \sf{ \implies{ {2}^{2}  + 4}}

\\  \sf{ \implies{4 + 4}}

\\  \sf{ \implies{ \red{8}}}

Hence, L. S. = R. S. (Showed!)

Similar questions