Math, asked by OreoMagie, 16 days ago

 \ {if \: \frac{1}{ \sqrt{5} + 2 } + \frac{1}{2 + \sqrt{3} } + \frac{1}{ \sqrt{3} + \sqrt{2} } + \frac{1}{ \sqrt{2} + 1 }} \\ \\ \tt{ = a + b \sqrt{c} \: \: then \: find \: the \: value \: of \: {a}^{2} + {b}^{2} + ab }

--->No spamming❌
---> Step by step solution needed!✔️​

Answers

Answered by Anonymous
60

{\underline{\large{\pmb{\frak{Given...}}}}}

\bullet \; {\underline{\boxed{\tt{ \frac{1}{\sqrt{5} + 2 } + \frac{1}{2 + \sqrt{3} } + \frac{1}{\sqrt{3} + \sqrt{2} } + \frac{1}{\sqrt{2} + 1 } = a + b\sqrt{c}  }}}}

{\underline{\large{\pmb{\frak{To \; Find...}}}}}

★ The value of the expression a² + b² + ab

{\underline{\large{\pmb{\frak{Full \; solution...}}}}}

★ Now firstly let's rewrite the equation given and rationalise the denominators

{: \implies } \bf \dfrac{1}{\sqrt{5} + 2 } + \dfrac{1}{2 + \sqrt{3} } + \dfrac{1}{\sqrt{3} + \sqrt{2} } + \dfrac{1}{\sqrt{2} + 1 } = a + b\sqrt{c}

  • Rationalising the denominator

{ : \implies } \bf \bigg[\dfrac{1}{\sqrt{5}  + 2  }  \times \dfrac{\sqrt{5} - 2 }{\sqrt{5} - 2}  \bigg]+ \bigg[\dfrac{1}{2 + \sqrt{3} } \times \dfrac{ 2 - \sqrt{3}  }{2 - \sqrt{3} } \bigg] + \bigg[ \dfrac{1}{\sqrt{3} + \sqrt{2} }  \times  \dfrac{\sqrt{3} - \sqrt{2} }{\sqrt{3} - \sqrt{2}} \bigg] + \bigg[\dfrac{1}{\sqrt{2} +1} \times \dfrac{\sqrt{2}  - 1 }{\sqrt{2}  -1} \bigg]

  • Using suitable algebric Identity

\bigstar \; {\underline{\boxed{\bf{ ( A + B ) ( A - B ) = A^2 - B^2  }}}}

  • Solving the equation in further

{ : \implies } \bf \bigg[ \dfrac{\sqrt{5} - 2  }{5 - 4} \bigg]+ \bigg[\dfrac{2 - \sqrt{3} } {4 - 3 }  \bigg] + \bigg[ \dfrac{\sqrt{3} -  \sqrt{2} }{ 3 - 2} \bigg] + \bigg[\dfrac{\sqrt{2} - 1}{ 2- 1} \bigg] = a + b \sqrt{c} \\ \\ \\ { : \implies } \bf \bigg[ \dfrac{\sqrt{5} - 2  }{1} \bigg]+ \bigg[\dfrac{2 - \sqrt{3} } {1 }  \bigg] + \bigg[ \dfrac{\sqrt{3} -  \sqrt{2} }{ 1} \bigg] + \bigg[\dfrac{\sqrt{2} - 1}{ 1} \bigg]= a + b \sqrt{c}

  • Canceling the denominator since it's 1

{: \implies } \bf \sqrt{5} - \cancel 2 + \cancel 2 - \cancel {\sqrt{3} }+ \cancel{\sqrt{3}} - \cancel {\sqrt{2} }+ \cancel{\sqrt{2}} = a + b \sqrt{c}  \\ \\ \\ {: \implies } \bf \sqrt{5} - 1 = a + b\sqrt{c} \\ \\ \\ {: \implies } \bf - 1 + 1 \sqrt{5} = a + b \sqrt{c}

  • Finding the value of the required expression

{: \implies } \bf a^2 + b ^2 + ab = ( - 1 )^2 + 1^2 + ( - 1) ( 1 ) \\\\\\ {: \implies } \bf a^2 + b^2 + ab = 1 + 1 - 1 \\ \\ \\{: \implies }  {\underline{\boxed{\bf{ a^2 + b ^ 2 + ab = 1 }}}\bigstar}

  • Henceforth the value of a² + b² + ab = 1

{\underline{\large{\pmb{\frak{Additional \; Information...}}}}

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \tiny\bf{\dag}\:\underline{\frak{\rm{S}\frak{ome\:important\:algebric\:identities\:::}}} \\\\ \green{\bigstar}\:\rm \red{ (A+B)^{2} = A^{2} + 2AB + B^{2}} \\\\ \red{\bigstar}\rm\: \green{(A-B)^{2} = A^{2} - 2AB + B^{2}} \\\\ \orange{\bigstar}\rm\: \blue{A^{2} - B^{2} = (A+B)(A-B)}\\\\ \blue{\bigstar}\rm\: \orange{(A+B)^{2} = (A-B)^{2} + 4AB}\\\\ \pink{\bigstar}\rm\: \purple{(A-B)^{2} = (A+B)^{2} - 4AB}\\\\ \purple{\bigstar} \rm\: \pink{(A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}}\\\\ \gray{\bigstar}\rm\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\ \bigstar\rm\: \gray{A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})} \\\\ \end{array}}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

* Note : If any error from thee app kindly see the answer from the web

See this question at : https://brainly.in/question/43125710

Similar questions