Math, asked by samiksha5055, 2 months ago


if \:  \frac{5 + 2  \: \sqrt[]{3} }{7  + 4 \sqrt{3} }  = a + b \sqrt{3} \:   \\  \\ then \: a  \:  \: b  \: \: is \: equal \: to \:
total explanation
no copying!!! leave it if you don't know I don't mind it.
just answer it with correct concept and explanation

thankyou​

Answers

Answered by ItzMeMukku
5

\red{\bf {Answer:}}

\begin{gathered}\\\end{gathered}

\underline{\boxed{\sf\purple{a=11, b=-6}}}

\begin{gathered}\\\end{gathered}

\red{\bf {Solution:}}

\begin{gathered}\\\end{gathered}

\frac{ (5 + 2√3)}{ (7 + 4√3)}

 \underline{\boxed{\sf\purple{= a + b√3}}}

\begin{gathered}\\\end{gathered}

Rationalizing the denominator on left-hand-side by multiplying the numerator and denominator with (7 - 4√3),

\begin{gathered}\\\end{gathered}

\frac{(5 + 2√3) (7 - 4√3)}{(7 + 4√3) (7 - 4√3)}

 \underline{\boxed{\sf\purple{= a + b√3}}}

\begin{gathered}\\\end{gathered}

Multiply term by term the two expressions on numerator of L.H.S. and for the denominator apply the identity (m+n) (m-n) = m² - n² .

\begin{gathered}\\\end{gathered}

\bold{We \:obtain,}

\begin{gathered}\\\end{gathered}

\frac{(35 - 20√3 + 14√3 - 8.√3.√3)}{[7² - (4√3)²]}

 \underline{\boxed{\sf\purple{= a + b√3}}}

\begin{gathered}\\\end{gathered}

\bold{Or, }

\begin{gathered}\\\end{gathered}

\frac{(35 - 6√3 - 8.3)}{(49 - 48)}

\underline{\boxed{\sf\purple{= a + b√3}}}

\begin{gathered}\\\end{gathered}

\bold{Or, }

\begin{gathered}\\\end{gathered}

\frac{(35 - 6√3 - 24)}{1}

 \underline{\boxed{\sf\purple{= a + b√3}}}

\begin{gathered}\\\end{gathered} </p><p>	</p><p> </p><p></p><p>[tex]\bold{Or, }

\underline{\boxed{\sf\purple{11 - 6√3 = a + b√3}}}

\begin{gathered}\\\end{gathered}

Now equate the rational and irrational terms from both sides.

\begin{gathered}\\\end{gathered}

\boxed{\sf{11 = a}}

\begin{gathered}\\\end{gathered}

\bold{Or, }

\begin{gathered}\\\end{gathered}

\boxed{\sf{a = 11}}

\begin{gathered}\\\end{gathered}

\bold{- 6√3 = b√3}

\begin{gathered}\\\end{gathered}

\underline{\boxed{\sf\purple{⇒ b = -6}}}

\begin{gathered}\\\end{gathered}

Thankyou :)

\begin{gathered}\\\end{gathered}

Refer the attachment for better understanding :)

Attachments:
Answered by DebasisTarini
14

Answer:

Now pls let me thank you and don't give me any more thanks. okey.

Attachments:
Similar questions