Math, asked by VaibhavM144, 1 year ago


if \frac{a {}^{2} }{b}  = c - d \\ then \: prove \: that     \frac{ \sqrt{bc - db} }{a}  = 1

Answers

Answered by abhi178
1

 \frac{ {a}^{2} }{b}  = c - d \\  \\  {a}^{2}  = b(c - d) \\  \\  {a}^{2}  =  bc - bd \\  \\ a =  \pm \sqrt{bc - bd}  \\  \\  1 =  \pm \frac{ \sqrt{bc - bd} }{a}
hence, √(bc - bd)/a = 1 proved
Answered by duragpalsingh
1
\text{Given,}\\ \frac{ {a}^{2} }{b}  = c - d \\  \\  \Rightarrow{a}^{2}  = b(c - d) \\  \\\Rightarrow  {a}^{2}  =  bc - bd \\  \\ \Rightarrow a =  \pm \sqrt{bc - bd}  \\  \\ \Rightarrow 1 =  \pm \frac{ \sqrt{bc - bd} }{a}\\or\\\Rightarrow \boxed{\boxed{\pm \frac{ \sqrt{bc - bd} }{a} = 1}}
Similar questions