Math, asked by CuteTeenPeach, 2 months ago


if \:  \frac{ {a}^{n + 1} +  {a}^{n + 1}  }{ {a}^{n}  +  {b}^{n} } is \: the \: arithmetic  \\ \: mean \: between \:  \\ a \: and \: b. \: then \: find \: the \: value \: of \: n

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

 \rm \: \dfrac{ {a}^{n + 1} + {a}^{n + 1} }{ {a}^{n} + {b}^{n} } is \: the \: arithmetic\: mean \: between \:a \: and \: b

 \rm :\implies\:\: \dfrac{ {a}^{n + 1} + {a}^{n + 1} }{ {a}^{n} + {b}^{n} } \: =  \: \dfrac{a + b}{2}

\rm :\longmapsto\:2( {a}^{n + 1} +  {b}^{n + 1}) = (a + b)( {a}^{n} +  {b}^{n})

\rm :\longmapsto\:2{a}^{n + 1} + 2{b}^{n + 1}= {a}^{n + 1} + b {a}^{n}  +  {b}^{n + 1} +  {ab}^{n}

\rm :\longmapsto\:2{a}^{n + 1} + 2{b}^{n + 1} - {a}^{n + 1}  -  {b}^{n + 1} = b {a}^{n}  +  {ab}^{n}

\rm :\longmapsto\:{a}^{n + 1} + {b}^{n + 1} = b {a}^{n}  +  {ab}^{n}

\rm :\longmapsto\:{a}^{n + 1}  -  {ba}^{n } = a {b}^{n} - {b}^{n + 1}

\rm :\longmapsto\:{a}^{n}(a -  {b})=  {b}^{n}(a - {b})

\rm :\longmapsto\: {a}^{n} =  {b}^{n}

\rm :\longmapsto\: {\bigg(\dfrac{a}{b} \bigg) }^{n} = 1

\rm :\longmapsto\: {\bigg(\dfrac{a}{b} \bigg) }^{n} = {\bigg(\dfrac{a}{b} \bigg) }^{0}

\bf\implies \:n = 0

Additional Information :-

1. Arithmetic mean > Geometric mean if observations are distinct.

2. Geometric mean between 2 positive numbers a and b is

 \sf \:  \sqrt{ab}

3. If n A.M's are inserted between two numbers a and b, then sum of n A.M's is n times the single AM between a and b.

Similar questions