Math, asked by RehanAhmadXLX, 1 year ago

If \: \frac{cos^{2} \theta}{cos^{2} \theta - cos^{2} \theta} = 3, \: and \: 0\ \textless \  \theta \ \textless \ 90, \: then \: the \: value \: of \: \theta \: is: \\ a. \: 60 \:\:\:\:\:\: b.\: 45 \:\:\:\:\: c. \: 30 \:\:\:\:\:\: d. \: 40.


Anonymous: rehan , r u sure that's the question , cause cos²∅ - cos²∅ in denominator gives 0
RehanAhmadXLX: yup
RehanAhmadXLX: but
RehanAhmadXLX: Sorrry.. Its Cot² - cos²
rohitkumargupta: sorry by mistake report ho gya
rohitkumargupta: sorry
rohitkumargupta: Bhai
RehanAhmadXLX: it's okay

Answers

Answered by rohitkumargupta
10
HELLO DEAR,

i think something is mistake in your questions

right questions is like that:-

 \frac{ {cos}^{2} theta }{ {cot}^{2} theta - {cos}^{2} theta} = 3 <br /><br /><br /><br /><br />\\solutions:-<br /><br />let theta=alpha<br /><br />[tex] \frac{ {cos}^{2} \alpha }{ {cot}^{2} \alpha - {cos}^{2} \alpha } = 3 \\ \\ = {cos}^{2} \alpha = 3 {cot}^{2} \alpha - 3 {cos}^{2} \alpha \\ \\ = 4 {cos}^{2} \alpha = 3 {cot}^{2} \alpha \\ \\ 4 {cos}^{2} \alpha = 3 \times \frac{ {cos}^{2} \alpha }{ {sin}^{2} \alpha } \\ \\ 4 = \frac{3}{ {sin}^{2} \alpha } \\ \\ {sin}^{2} \alpha = \frac{3}{4} \\ \\ {sin}^{2} \alpha = { (\frac{ \sqrt{3} }{2} })^{2} \\ \\ sin \alpha = \frac{ \sqrt{3} }{2} \\ \\ {sin} \alpha = sin60 \\ \\ \alpha = 60

. hence option (a) 60 is correct
I HOPE ITS HELP YOU DEAR,
THANKS

RehanAhmadXLX: Please mention in the answer that my Question has this or that mistake.. at the top. Thanks
Answered by BrainlyHulk
9
Hola bro

( cos²∅ ) / ( cot²∅ - cos²∅ ) = 3

cos²∅ = 3cot²∅ - 3cos²∅

4cos²∅ = 3cot²∅

cos²∅/cot²∅ = ¾

sin²∅ = 3/4

taking roots in both sides ...

sin∅ = √3 / 2

We know that sin 60° = √3 / 2

sin 60° = sin ∅

so ,

∅ = 60°

Hope it helps.

Anonymous: answer's 60 , dude ...
BrainlyHulk: oka, one mistake .... gimme edit option ^_^"
Similar questions