Math, asked by Anonymous, 10 months ago


if \: \frac{ \sqrt{2a + 1} +  \sqrt{2a - 1}  }{ \sqrt{2a + 1} -  \sqrt{2a  - 1}   }  = x


Prove that -:


 {x}^{2} - 4ax + 1 =  0



Answer it.......BOARDZ..!⚠​

Answers

Answered by zahaansajid
68

 \frac{ \sqrt{2a + 1} +  \sqrt{2a - 1} }{ \sqrt{2a + 1}  -  \sqrt{2a - 1}}  \times  \frac{\sqrt{2a + 1} +  \sqrt{2a - 1}}{\sqrt{2a + 1} +  \sqrt{2a - 1} }   \\  =  \frac{{(\sqrt{2a + 1} +  \sqrt{2a - 1})}^{2} }{2a + 1 - 2a + 1}   \\  =  \frac{2a + 1 + 2a - 1 + 2 \sqrt{4 {a}^{2}  - 1} }{2}  \\  = \frac{4a + 2 \sqrt{4 {a}^{2} - 1 } }{2}  = 2a +  \sqrt{4 {a}^{2} - 1 }

Hope this is helpful to you

Pls mark as brainliest

Thnx for the 25 points

Follow me and I'll follow back

Answered by Anonymous
128

We have give that, \sf\frac{ \sqrt{2a + 1} + \sqrt{2a - 1} }{ \sqrt{2a + 1} - \sqrt{2a - 1} }\: =\: x

We have to use the above equations and prove that x² - 4ax + 1 = 0

Now,

Rationalize the denominator

\Rightarrow\:\sf\frac{ \sqrt{2a + 1} + \sqrt{2a - 1} }{ \sqrt{2a + 1} - \sqrt{2a - 1} } \:\times\:\frac{ \sqrt{2a + 1} + \sqrt{2a +1} }{ \sqrt{2a + 1} + \sqrt{2a + 1} }\:=\:x

\Rightarrow\:\sf\dfrac{( \sqrt{2a + 1} + \sqrt{2a - 1}  )^{2} }{ {2a + 1} -{2a + 1} }\:=\:x

Used identities:

(a + b) (a - b) = a² - b²

(a + b) (a + b) = (a + b)²

\Rightarrow\:\sf\dfrac{2a+1 + 2a-1+2\sqrt{(2a+1)(2a-1)}}{ 2 }\:=\:x

+1 and -1 cancel out, we left with

\Rightarrow\:\sf\dfrac{4a +2\sqrt{(2a+1)(2a-1)}}{ 2 }\:=\:x

Take 2 as common

\Rightarrow\:\sf\dfrac{2[2a+\sqrt{(2a+1)(2a-1)}]}{ 2 }\:=\:x

\Rightarrow\:\sf{2a+\sqrt{(2a+1)(2a-1)}\:=\:x}

\Rightarrow\:\sf{\sqrt{(2a+1)(2a-1)}\:=\:x-2a}

Again, (2a+1)(2a-1) = 4a² - 1

Here, used identity is (a+b)(a-b) = a² - b²

\Rightarrow\:\sf{\sqrt{(4a^2-1)}\:=\:x-2a}

Squaring on both sides

\Rightarrow\:\sf{\sqrt{(4a^2-1)}^2\:=\:(x-2a)^2}

Used identity:

(a - b)² = a² + b² - 2ab

\Rightarrow\:\sf{4a^2-1\:=\:x^2+4a^2-4ax}

Both 4a² cancel out, as they are opposite in signs

\Rightarrow\:\sf{-1\:=\:x^2-4ax}

\Rightarrow\:\sf{x^2-4ax+1\:=\:0}

Hence, proved

Similar questions