Math, asked by y2mobilecare999, 6 months ago


if \:  \frac{ \sqrt{7} - 2 }{ \sqrt{7} \ + 2 }    = a \sqrt{7}  + b \: find \: a \: and \: b

Answers

Answered by Anonymous
5

Please follow me and thanks my answers

Attachments:
Answered by aryan073
4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \bullet \:  \frac{ \sqrt{7}  - 2}{ \sqrt{7} + 2 }  = a \sqrt{7}  + b

 \:   \underline{\bf{ \color{whitesmole} \: answer}}

 \:  \dashrightarrow \bf{  \: lhs \to\frac{ \sqrt{7}  - 2}{ \sqrt{7} + 2 } }

 \:  \:  \bf{  \dashrightarrow    \frac{ \sqrt{7} - 2 }{ \sqrt{7} + 2 }  \times   \frac{ \sqrt{7} - 2 }{ \sqrt{7} - 2 } }

 \:  \:  \dashrightarrow \bf{ \frac{ \sqrt{7}( \sqrt{7}  - 2) - 2( \sqrt{7}  - 2) }{7 - 4} }

 \:  \bf{ \dashrightarrow  \frac{7 - 2 \sqrt{7} - 2 \sqrt{7} + 4  }{3} }

 \:  \:  \bf{ \dashrightarrow  \frac{11 - 4 \sqrt{7} }{3} }

 \:  \:  \underline{\bf{ lhs = rhs}}

 \:  \: \bf{ \dashrightarrow  \frac{11 - 4 \sqrt{7} }{3}  = a \sqrt{7}   + b}

 \:  \bf{ \dashrightarrow \: 11 - 4 \sqrt{7}  = 3a \sqrt{7}  + 3b}

 \:   \bigstar:   \underline{\bf{ comparing \: both \: sides}}

 \:  \:  \bf{ \dashrightarrow 3b = 11}

 \:  \:  \bf{ \dashrightarrow  \: b =  \frac{11}{3}  \: }

 \:  \:  \bf{ \dashrightarrow  \: and  \:  \:  \:  \:  \: 3a \sqrt{7}  =  - 4 \sqrt{7} }

 \:  \:  \:  \bf{ \dashrightarrow \: 3a =  - 4}

 \:  \:  \bf{ \dashrightarrow \:a =  \frac{ - 4}{3} }

Similar questions