Math, asked by prithvirajkadam665, 1 month ago


if   \frac{x}{y} =  \frac{4}{5} then \: find \: the \: value \: of \: the \: ratio \:  \frac{4x - y}{4x + y} .

Answers

Answered by UtsavPlayz
1

 \dfrac{x}{y}  =  \dfrac{4}{5}

 \dfrac{4x}{y}  = 4 \times  \dfrac{4}{5}  =  \dfrac{16}{5}

Using Componendo-Dividendo

 \dfrac{4x  - y}{4x + y}  =  \dfrac{16 - 5}{16 + 5}

 \dfrac{4x - y}{4x + y}  =  \dfrac{11}{21}

Answered by XxItzAnvayaXx
5

FINAL ANSWER:-

11:21

GIVEN:-

x:y=4:5

or

\frac{x}{y} =\frac{4}{5}

TO FIND:-

the value of ratio of \frac{4x-y}{4x+y}

SOLUTION:-

here \frac{x}{y} =\frac{4}{5} can b written as x=\frac{4y}{5}

as we got the value of x so , let's put it in equation

we get,

=\frac{4(\frac{4y}{5})-y}{4(\frac{4y}{5})+y}\frac{\frac{16y}{5}-y }{\frac{16y}{5}+y}

=\frac{\frac{16y-5y}{5} }{\frac{16y+5y}5}\frac{\frac{11y}{5} }{\frac{21y}5}

=\frac{5(11y)}{5(21y)}\frac{55y}{105y}

=\frac{11}{21}

or

11:21

⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔

Attachments:
Similar questions