Math, asked by MichWorldCutiestGirl, 1 day ago

 if \: \frac{x}{y} = \frac{cosA}{cosB} \: then \: \frac{xTanA + xTanB}{x + y} is \: equal \: to \: \: \ \\ \sf◆ \: tan \bigg( \frac{a + b}{2} \bigg) \\ \\ \sf◆Cot (A+B)\\ \\ \sf◆Tan(A+B) \\ \\ \sf◆Cot \frac {A+B}{2} \\ \\ ◆tan(2a+b​) \\ \\ ◆Cot(A+B) \\ \\ ◆Tan(A+B) \\ \\ ◆Cot2A+B​​



Answer with proper explanation & Verify also .

Don't spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​

Answers

Answered by pratharshan8
2

Answer:

 \tan( \frac{a + b}{2} )

 \frac{x \tan(a) + y \tan(b) }{x + y}  \:  \:  \:  \:  \:  \:  \:(1) \\

 \frac{y \cos(a) }{  \cos(b) }  \times  \frac{ \sin(a) }{ \cos(a) } </p><p> +  \frac{y \sin(b) }{ \cos(b) }  \\  frac{y  \cos(a)  }{ \cos(b) }  + y \\  \frac{y \sin(a) }{ \cos(b) }   +  \frac{y \sin(b) }{ \cos(b) }  \\  \frac{y \cos(a) + y \cos(b)  }{ \cos(b) }  \\  =  \frac{ \sin(a) +  \sin(b)  }{ \cos(a) +  \cos(b)  }  \\

 \sin(a)  +  \sin(b)  = 2 \sin( \frac{a + b}{2} ) . \cos( \frac{a - b}{2} )   \\ by \\ \cos(a)  +  \cos(b)  = 2   \cos( \frac{a + b}{2} ) . \cos( \frac{a - b}{2} )  \\  =  \tan( \frac{a + b}{2} )

Answered by MissWorld2021
1

Answer:

if

y

x

=

cosB

cosA

then

x+y

xTanA+xTanB

isequalto

◆tan(

2

a+b

)

◆Cot(A+B)

◆Tan(A+B)

◆Cot

2

A+B

◆tan(2a+b)

◆Cot(A+B)

◆Tan(A+B)

◆Cot2A+B

Step-by-step explanation:

Plz become my bestie

Similar questions