Math, asked by siddhibhurle2007, 2 months ago


if \:  \frac{x}{y}  +  \frac{y}{x}  = (x \: comma \: y \: not \: equal \: to \: 0 \\ find \: value \: of \:  {x}^{3}  -  {y}^{3}
Answer please. don't spam​

Answers

Answered by LivetoLearn143
3

\large\underline{\sf{Solution-}}

It is given that

 \sf \: \dfrac{x}{y}  + \dfrac{y}{x}  = -  1

find the value of

 \sf \:  {x}^{3}  -  {y}^{3}

So,

From given,

 \sf \: \dfrac{x}{y}  + \dfrac{y}{x}  = -  1

 \sf \: \dfrac{ {x}^{2}  +  {y}^{2} }{xy}  = -  1

 \sf \:  {x}^{2} +  {y}^{2} =  - xy

 \sf \:  {x}^{2} +  {y}^{2}  +  xy = 0

On multiply both sides, by x - y,

 \sf \:  (x - y)({x}^{2} +  {y}^{2}  +  xy) = 0

 \sf \:  {x}^{3} -  {y}^{3}  = 0

Hence,

The value of

 \sf \:  {x}^{3} -  {y}^{3}  = 0

Similar questions