Physics, asked by SharmaShivam, 1 year ago

If\:initial\:velocity\:of\:an\\object\:is\:'u'\:and\\acceleration\:is\:'a'\:then\\find\:the\:distance\\travelled\:in\:{n}^{th}\:second.\\(A){S}_{n}=un+\frac{a{n}^{2}}{2}\\(B) {S}_{n}=u+\frac{a}{2}(2n+1)\\(C){S}_{n}=un+a{n}^{2}\\(D){S}_{n}=(n+\frac{a}{2}){n}^{2}


Anonymous: answer is u+ a/2 (2n-1)
SharmaShivam: then answer it
Anonymous: where is option?
SharmaShivam: you can see there a green coloured tab on which ANSWER is written
Anonymous: where is right option? u + a/2(2n-1)?

Answers

Answered by Shubhendu8898
5
Given,

Initial velocity  of an  object  is  u and  acceleration is  a.

Let the ditance traveled in n second  from initial position is  S_n .

According  second  equation of  motion,

Distance traveled in  t second,

S=ut+\frac{1}{2}at^{2}

Distance traveled  in  n second,

S_n=un+\frac{1}{2}an^{2}...........i)

Distance traveled in (n-1) second,

S_{n-1}=u(n-1)+\frac{1}{2}a(n-1)^{2}...........ii)

Hence,

Distance traveled in nth second,

S_{n^{th}}=S_n-S_{n-1}\\\\\;\;\;\;\;\;=un+\frac{1}{2}an^{2}-[u(n-1)+\frac{1}{2}a(n-1)^{2}]\\\\=un+\frac{1}{2}an^{2}-un+u-\frac{1}{2}a(n-1)^{2}\\\\=un+\frac{1}{2}an^{2}-un+u-\frac{1}{2}a(n^{2}+1-2n)\\\\=u+\frac{1}a(n^{2}-n^{2} -1+2n)\\ \\S_{n^{th} }=u+\frac{1}{2}a(2n-1)
Answered by Anonymous
2

Distance traveled in nth second,

\begin{lgathered} \sf \: S_{n^{th}}=S_n-S_{n-1}\\\\\;\;\;\;\;\; \sf=un+\frac{1}{2}an^{2}-[u(n-1)+\frac{1}{2}a(n-1)^{2}]\\\\ \sf \: =un+\frac{1}{2}an^{2}-un+u-\frac{1}{2}a(n-1)^{2}\\\\ \sf \: =un+\frac{1}{2}an^{2}-un+u-\frac{1}{2}a(n^{2}+1-2n)\\\\ \sf \: =u+\frac{1}a(n^{2}-n^{2} -1+2n)\\ \\ \sf \red{S_{n^{th} }=u+\frac{1}{2}a(2n-1)}\end{lgathered} </p><p></p><p>

Similar questions