Math, asked by Greengoo, 10 months ago


if  \: log_{2}(x)  \times  log_{2}( \frac{x}{16} )  + 4 = 0 \:  then \: x \: is \: equal \: to

Answers

Answered by Uniquedosti00017
1

Answer:

 log_{2}(x)  +  log_{2}( \frac{x}{16} )  + 4 = 0 \\  =  >  log_{2}(x +  \frac{x}{16} )  =  - 4 \\  =  >  {2}^{ - 4}  = x +  \frac{x}{16}  \\  =  >  \frac{1}{ {2}^{4} }  =  \frac{16x + x}{16}  \\  =  >  \frac{1}{16}  =  \frac{17x}{16}  \\  =  > 17x = 1 \\  =  > x =  \frac{1}{17}

the value of x is

1/17

.

Answered by Anonymous
10

Answer:

\huge\bold {\underline{\underline{Solution}}}

\implies log_{2}(x) +  log_{2} \left(\dfrac{x}{16} \right) + 4 = 0

\implies log_{2}\left(x +\dfrac{x}{16}\right) =  - 4

\implies {2}^{ - 4}  = x +  \dfrac{x}{16}

\implies \dfrac{1}{ {2}^{4} }  =  \dfrac{16x + x}{16}

\implies \dfrac{1}{16}  =  \dfrac{17x}{16}

\implies17x = 1

\implies \: x =  \dfrac{1}{17}

Similar questions