Math, asked by khanarhaan081, 9 months ago

if \\ p (x) = x^{2} - \sqrt[2]{2x+1} \\ then\\ find\\ the \\ value \\ of \\ p\sqrt[2]{2}

Answers

Answered by Anonymous
2

\sf\red{\underline{\underline{Answer:}}}

\sf{\implies{p(\sqrt2)=2-\sqrt{2\sqrt2+1}}}

\sf\orange{Given:}

\sf{px=x^{2}-\sqrt{2}{2x+1}}

\sf\pink{To \ find:}

\sf{p(\sqrt[2]{2})}

\sf\green{\underline{\underline{Solution:}}}

\sf{\sqrt[2]{2} \ also \ can \ be \ written \ as \ \sqrt2}

\sf{\implies{p(x)=x^{2}-\sqrt{2x+1}}}

\sf{\implies{p(\sqrt2)=\sqrt2^{2}-sqrt{2\times2+1}}}

\sf\purple{\implies{p(\sqrt2)=2-\sqrt{2\sqrt2+1}}}

Answered by TheSentinel
32

\purple{\underline{\underline{\pink{Que}\red{stion:}}}}

\rm{If \ p (x) = x^{2} - \sqrt[2]{2x+1} \ then \ find \ the }

\rm{value \ of \ p\sqrt[2]{2}}

_________________________________________

\pink{\underline{\underline{\orange{Ans}\green{wer:}}}}

\sf\red{\implies{p(\sqrt2)=2-\sqrt{2\sqrt2+1}}}

_________________________________________

\sf\underline\blue{Given:}

\rm{p (x) = x^{2} - \sqrt[2]{2x+1}}

_________________________________________

\sf\purple{To \ find:}

\sf{p(\sqrt[2]{2})}

________________________________________

\sf\green{\underline{\underline{Solution:}}}

\sf{\sqrt[2]{2} \ also \ can \ be \ written \ as \ \sqrt2}

\sf{\implies{p(x)=x^{2}-\sqrt{2x+1}}}

\sf{\implies{p(\sqrt2)={(\sqrt{2})}^2-\sqrt{2\sqrt2+1}}}

\sf\green{\implies{p(\sqrt2)=2-\sqrt{2\sqrt2+1}}}

________________________________________

\rm\pink{Hope \ it \ helps \ :))}

Similar questions