Math, asked by nandita58, 1 year ago


if \\  \:  \:  \:  \:  \sec \alpha  +  \tan \alpha =  \sqrt{3}  \\ so \:  \: proved \:  \: that \\   \sec\alpha  =  \frac{2}{ \sqrt{3} }

Answers

Answered by sprao534
1

Answer:

please see the attachment

Attachments:
Answered by anu24239
4

\huge\mathfrak\red{Answer}

 \sec \alpha   +  \tan \alpha  =  \sqrt{3}  \\  \\  \frac{1}{ \cos \alpha  }  +  \frac{ \sin \alpha  }{ \cos \alpha }  =  \sqrt{3}  \\  \\  \frac{1 +  \sin \alpha  }{ \cos \alpha  }  =   \sqrt{3}  \\  \\ 1 +  \sin \alpha  =  \sqrt{3}  \cos \alpha  \\  \\ squaring \\  \\  {(1 +  \sin \alpha )}^{2}  =  {( \sqrt{3}  \cos \alpha ) }^{2}  \\  \\ 1 +  {sin}^{2}  \alpha  + 2 \sin \alpha  = 3 { \cos }^{2}  \alpha  \\  \\ 1 +  {sin}^{2}  \alpha  + 2 \sin \alpha  = 3(1 -  {sin}^{2}  \alpha ) \\  \\ 1 +  {sin}^{2}  \alpha  + 2 \sin \alpha  = 3 - 3 {sin}^{2}  \alpha  \\  \\ 1 - 3 +  {sin}^{2}  \alpha  + 3 {sin}^{2}  \alpha  + 2 \sin \alpha  = 0 \\  \\  - 2 + 4 { \sin }^{2}  \alpha  + 2 \sin \alpha  = 0 \\  \\ divide \: by \: 2 \\  \\ 2 {sin}^{2}  \alpha  +  \sin \alpha  - 1 = 0 \\  \\ 2 {sin}^{2}  \alpha  + 2 \sin \alpha  -  \sin \alpha  - 1 = 0 \\  \\ 2 \sin \alpha ( \sin \alpha  + 1) - 1( \sin \alpha  + 1) = 0 \\  \\( 2 \sin \alpha  - 1)( \sin\alpha  + 1) = 0 \\  \\ so \: we \: get \:  \sin \alpha  =  \frac{1}{2}  \\  \\  \alpha  =  \frac{\pi}{3}  \\  \\  \sec \alpha  =  \sec \frac{\pi}{3}  \\  \\  \sec \alpha  =  \frac{2}{ \sqrt{3} }

Similar questions