Math, asked by kp526757, 9 months ago


if \:  sec( \infty ) =  \frac{25}{7} then \:find \:  the \: value \: of \:  \tan( \infty ) and \:  \cosec( \infty )

Answers

Answered by BrainlyPopularman
32

Question :

 \\ { \bold{if \: \:   \sec( \theta ) = \dfrac{25}{7} \:,  \:  then  \: \:find  \: \: the \:  \: value \:  \:  \: of \: \tan( \theta )  \:  \: and \: cosec( \theta )}}  \\

ANSWER :

GIVEN :

 \\ \:  \:  \to  \:  { \bold{ \: \:   \sec( \theta ) = \dfrac{25}{7} \:  \: }}

TO FIND :

 \\ \:  \:  \to  \:  { \bold{ \: \:   \tan( \theta ) = ? \:  \: }}

 \\ \:  \:  \to  \:  { \bold{ \: \:   cosec( \theta ) = ? \:  \: }}

SOLUTION :

 \\ \:  \implies    { \bold{ \sec( \theta ) = \dfrac{25}{7} \:  \: }}

• We should write this as –

 \\ \:  \implies    { \bold {  \dfrac{1}{\cos( \theta ) }= \dfrac{25}{7} \:  \: }}

 \\ \:  \implies    { \bold {  {\cos( \theta ) }= \dfrac{7}{25} \:  \: }}

• We know that –

 \\ \:  \implies    { \bold {   { \sin}^{2}( \theta) +  {\cos {}^{2} ( \theta ) }=1 \:  \: }}

 \\ \:  \implies    { \bold {   { \sin}^{2}( \theta)  = 1 -   {\cos {}^{2} ( \theta ) }\:  \: }}

 \\ \:  \implies    { \bold {   { \sin}^{}( \theta)  =  \sqrt{1 -   {\cos {}^{2} ( \theta ) }}\:  \: }}

• Now put the value –

 \\ \:  \implies    { \bold {   { \sin}^{}( \theta)  =  \sqrt{1 -   { {( \dfrac{7}{25}) }^{2} }}\:  \: }}

 \\ \:  \implies    { \bold {   { \sin}^{}( \theta)  =  \sqrt{1 -   { { \dfrac{49}{625} }^{} }}\:  \: }}

 \\ \:  \implies    { \bold {   { \sin}^{}( \theta)  =  \sqrt{{ { \dfrac{625 - 49}{625} }^{} }}\:  \: }}

 \\ \:  \implies    { \bold {   { \sin}^{}( \theta)  =  \sqrt{{ { \dfrac{576}{625} }^{} }}\:  \: }}

 \\ \:  \implies    { \bold {   { \sin}^{}( \theta)  =  {{ { \dfrac{24}{25} }^{} }}\:  \: }}

• Now let's find –

 \\ \:  \longrightarrow \:    { \bold {   { \tan}^{}( \theta)  =  {{ { \dfrac{ \sin( \theta) }{ \cos( \theta) } }^{} }}\:  \: }}

 \\ \:  \implies \:    { \bold {   { \tan}^{}( \theta)  =  {{ { \dfrac{  \dfrac{24}{ \cancel{25}}  }{  \dfrac{7}{ \cancel{25}}  } }^{} }}\:  \: }}

 \\ \:  \implies \:   \large  { \boxed{ \bold {   { \tan}^{}( \theta)  =  {{ { \dfrac{ 24 }{ 7 } }^{} }}\:  \: }}}

 \\ \:  \longrightarrow \:    { \bold {   { cosec}^{}( \theta)  =  {{ { \dfrac{ 1}{ \sin( \theta) } }^{} }}\:  \: }}

 \\ \:  \implies \:    { \bold {   { cosec}^{}( \theta)  =  {{ { \dfrac{ 1}{  \dfrac{24}{25}  } }^{} }}\:  \: }}

 \\ \:  \implies \:   \large{ \boxed  { \bold {   { cosec}^{}( \theta)  =  {{ { \dfrac{ 25}{  24 } }^{} }}}\:  \: }}

Similar questions