Math, asked by Anonymous, 1 year ago


if \:  \sin(a + b)  = 1 \\ and \:  \cos(a - b)  = 1 \\ 0 \leqslant (a + b) \leqslant 90 \: degree  \\ \: and \: a > b  \: \: then \: find \\ \: value \: of \: a \: and \: b


Anonymous: please give full solution

Answers

Answered by RabbitPanda
13

sin(A+B)=1 & cos(A-B) = 1


=> sin(A+B)=cos(A-B)


sin(A+B) = cos[90-(A+B)] = cos(A-B)


thus, 90-A-B = A-B


2A =90°


A= 45°


B = 45°



@skb


Anonymous: see condition a > b
Anonymous: a 》 b
RabbitPanda: Wait
RabbitPanda: I think it is correct bcs sin 90 is 1 and cos 0 is 1
Anonymous: I also got that only
Anonymous: because if a is greater than b ...then how ... a-b = 0 for the cosine ratio
RabbitPanda: Yes
siddhartharao77: Nice Explanation sis!
Anonymous: Well Done ⭐〽〽〽⭐⭐❇
Answered by BrainIyMSDhoni
17
 \huge \textbf{hello}

 \huge \textbf{solutions}

 \textbf{given}

sin(A+B) = 1

sin(A+B) = sin90.

[ Because Sin90 = 1]

A+B = 90 [equation 1]

cos(A-B) = 1

cos(A-B) = cos0

[Because Cos0= 1]

A-B = 0 [equation 2]

Add equation 1 and 2

A+B = 90  ,  A-B = 0

 \underline \textbf{now}

=> A+B+A-B =90+0

=> A+A = 90

=> 2A = 90

=> A = 45°

 \huge \: {hence}

 \boxed{a = 45} \: and \: \boxed{b = 45}

 \textbf{i \: hope \: helps \: u}

 \huge \textbf{thank \: u}
Similar questions