Math, asked by SƬᏗᏒᏇᏗƦƦᎥᎧƦ, 2 months ago


If \: sin \:  A \:  =  \:  \frac{ \sqrt{3} }{2}  \: and \: cos \: B \:  =  \:  \frac{ \sqrt{3} }{2} , \\  \: find \: the \: value \:  of \: : \:  \frac{tan A - tan B}{1 + tan A \: tan B}  \\
✔️✔️Need explained answers only
✔️✔️ No plagiarism

Answers

Answered by usernametaken8
2

Answer:

1/root3

Step-by-step explanation:

SinA = root3/2

CosA = root( 1 - sin²A) = root(1- 3/4) = root(1/4) = 1/2

TanA = SinA/CosA = root3

Cos B = Sin(90°-B) = root3/2 = sinA

=> 90° - B = A

=> A+B = 90°

TanB = Tan(90°-A) = CotA = 1/TanA = 1/root3

Therefore,

(TanA - TanB)/1+TanA×TanB

= (root3 - 1/root3)/1 + root3×1/root3

= ( 3-1)/2×root3 = 1/root3

Answered by saniyasadiya
0

Sin =3/5=B/AC

Co3A =3110/sin =AB /AC 45/5

tana =sin/3110 =BC /AB =3/1

Similar questions