Math, asked by s198a126n26, 11 months ago


if  \sin( \alpha  )  = 5  \div 13 \:  \: then \: prove \: it \: that \:  \tan( \alpha )  +  \sec( \alpha  )  = 1.5


Answers

Answered by RvChaudharY50
76

Given :-

  • sinA = (5/13) .

To Prove :-

  • TanA + secA = 1.5.

Points To Remember :-

  • sin theta = Perpendicular/Hypotenuse
  • cos theta = Base/Hypotenuse
  • tan theta = Perpendicular/Base
  • cosec theta = Hypotenuse/Perpendicular
  • sec theta = Hypotenuse/Base
  • cot theta = Base/Perpendicular
  • (Perpendicular)² + (Base)² = (Hypotenuse)²

Solution :-

sinA = 5/13 = Perpendicular/Hypotenuse

So,,

Perpendicular = 5

→ Hypotenuse = 13 .

So,

Base = √(H² - P²)

→ Base = √(13² - 5²)

→ Base = √(169 - 25)

→ Base = √144

→ Base = 12.

__________________________

So,

tan A = Perpendicular/Base

→ tanA = 5/12 .

And,

sec A = Hypotenuse/Base

→ secA = 13/12 .

Hence,

tanA + secA = (5/12) + (13/12)

→ tanA + secA = (18/12)

→ tanA + secA = 1.5 (Proved).

______________________________

Answered by Anonymous
60

Answer:

given \\ \\  sin \alpha =  \frac{5}{13}   =  \frac{p}{h} \\ \\  by \: pythagoras \: theoram \\  \\  \implies {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \\  \implies {(13)}^{2}  =  {(5)}^{2}  +  {b}^{2}  \\  \\  \implies169 = 25 +  {b}^{2}  \\  \\  \implies169 - 25 =  {b}^{2}  \\  \\  \implies144 =  {b}^{2}   \\  \\  \implies b =  \sqrt{144}  \\  \\  \implies b = 12

tan \alpha =  \frac{p}{b}  =  \frac{5}{12}  \\  \\ sec \alpha =  \frac{h}{b}  =  \frac{13}{12} \\  \\ put \: value \: of \: this \: in \: given \: equation \\  \\ \implies tan \alpha + sec \alpha = 1.5 \\  \\  \implies \frac{5}{12}  +  \frac{13}{12}  = 1.5 \\  \\  \implies \frac{18}{12}  = 1.5 \\  \\  \implies1.5 = 1.5 \\  \\ hence \: proved.

Similar questions