Math, asked by komal96961617, 19 days ago

.
if \: sin \alpha  +  \sin   {}^{2}  \alpha  = 1 \:  \\ then \\  \cos {}^{12} ( \alpha )  + 3 \cos {}^{10} ( \alpha )  + 3 \cos {}^{8} ( \alpha )  +  \cos {}^{6} ( \alpha )  +  \cos {}^{4} ( \alpha )  + 2 \cos {}^{2} ( \alpha )  - 2
please give the correct answer
correct answer will mark brainlist

Answers

Answered by mathdude500
14

Appropriate Question

If

\rm \: sin \alpha  +  {sin}^{2}\alpha  = 1

then

\rm \:  {cos}^{12}\alpha  + 3 {cos}^{10}\alpha  + 3 {cos}^{8}\alpha  +  {cos}^{6}\alpha  + 2 {cos}^{4}\alpha  +  {2cos}^{2}\alpha  - 2 =

 \red{\large\underline{\sf{Solution-}}}

Given that,

\rm \: sin\alpha  +  {sin}^{2}\alpha  = 1

\rm \: sin\alpha  = 1 -  {sin}^{2}\alpha

\rm\implies \:sin\alpha  =  {cos}^{2}\alpha  -  -  - (1)

Now, Consider

\rm \:  {cos}^{12}\alpha  + 3 {cos}^{10}\alpha  + 3 {cos}^{8}\alpha  +  {cos}^{6}\alpha  + 2 {cos}^{4}\alpha  +  {2cos}^{2}\alpha  - 2

can be rewritten as using equation (1),

\rm \:  =  \:  {sin}^{6}\alpha  + 3 {sin}^{5}\alpha  + 3 {sin}^{4}\alpha  +  {sin}^{3}\alpha  + 2 {sin}^{2}\alpha  +  2sin\alpha  - 2

\rm \:  =  \:  {sin}^{3}\alpha ( {sin}^{3}\alpha  + 3 {sin}^{2}\alpha  + 3sin\alpha  + 1) + 2( {sin}^{2}\alpha  + sin\alpha  - 1)

We know,

\boxed{\tt{  {x}^{3} +  {3x}^{2} + 3x + 1 =  {(x + 1)}^{3} \: }} \\

and also given that

\boxed{\tt{ sin\alpha  +  {sin}^{2}\alpha  = 1 \: }} \\

So, using this, we get

\rm \:  =  \:  {sin}^{3}\alpha  {(sin\alpha  + 1)}^{3} + 2(1 - 1)

\rm \:  =  \:  {\bigg(sin\alpha (sin\alpha  + 1)\bigg) }^{3} + 2 \times 0

\rm \:  =  \:  {\bigg( {sin}^{2}\alpha  + sin\alpha  \bigg) }^{3} + 0

\rm \:  =  \:  {\bigg(1\bigg) }^{3}

\rm \:  =  \: 1

Hence,

\boxed{\tt{ \rm \:  {cos}^{12}\alpha  + 3 {cos}^{10}\alpha  + 3 {cos}^{8}\alpha  +  {cos}^{6}\alpha  + 2 {cos}^{4}\alpha  +  {2cos}^{2}\alpha  - 2 = 1}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions