Answers
Answered by
4
Step-by-step explanation:
Given :-
Sin o + Cos o = √3
On squaring both sides then
=>(Sin o + Cos o)^2 =( √3 )^2
It is in the form of (a+b)^2
Where,a=Sin o and b=Cos o
we know that (a+b)^2 = a^2 +2ab+b^2
=>Sin^2 o +2 Sin o Cos o + Cos^2 o = 3
We know that
Sin^2 o + Cos^2 o = 1
=>1+2 Sin o Cos o = 3
=> 2 sin o Cos o = 3-1
=>2 Sin o Cos o = 2
=>Sin o Cos o = 2/2
=>Sin o Cos o = 1
Therefore,Sin o Cos o = 1 -----(1)
Now LHS = Tan o + Cot o
we know that
Tan A = Sin A/ Cos A
Cot A = Cos A/ Sin A
=>(Sin o/Cos o) +(Cos o/Sin o)
=>[(Sin0×Sin o)+(Cos o ×Cos o)]/Sin o Cos o
=>(Sin^2 o + Cos^2 o)/(Sin o Cos o)
We know that
Sin^2 o + Cos^2 o = 1
=>1/ Sin o Cos o
From (1)
=>1/1
=>1
=>RHS
LHS=RHS
Answer:-
If Sin o + Cos o = √3 then Tan o + Cot o = 1
Used formulae:-
- Sin^2 A + Cos^2 A= 1
- Tan A = Sin A/ Cos A
- Cot A = Cos A/ Sin A
Similar questions