Math, asked by prajapatijigar656, 2 months ago


if \: sin \: tetha \:  =  \frac{7}{25} \: find \: the \: value \: of \: cos \: tetha \: and \: tan \: tetha
please give me this question answer of 10th standard ​

Answers

Answered by Kalihacker
1

Answer:

Given

sin (thetha)=7/25

=> Hypotenuse = 25 , Opposite side=7

Therefore adjacent side=25x25-7x7

=(625-49)^1/2=(576)^1/2=24

Therefore ,

cos(thetha)=24/25

tan(thetha)=7/24

Answered by vardhannaiduravuri
1

Step-by-step explanation:

Trigonometric ratios:

sin theta=opp side/hypotenuse

cos theta=adj side/hypotenuse

tan theta=opp side/adj side

Given:

sin theta=7/25 = opp side/hypotenuse

In triangle ABC,<B=90°,<A=theta

By Pythagoras theorem,

(Ac)^2= AB^2+BC^2

Here: AC= 25,BC=7

(25)^2=AB^2+(7)^2

625=AB^2+49

625-49=AB^2

576=AB=^2

AB=√576

AB=24

So,

Opp side =BC=7cm

Adj side =AB= 24cm

Hypotenuse=AC=25cm

As per trigonometric ratios:

cos theta=24/25

tan theta=7/24

Similar questions