Math, asked by anushikachabbra, 1 year ago


if \:  \sqrt{18 - 6 \sqrt{5} }  = \sqrt{a}   -  \sqrt{b}  \: then \: prove \: that \:  \:  \: a + b \:  =  \: 18
plzzz help...

Answers

Answered by ShuchiRecites
3
Hello Mate!

  \sqrt{18 - 6 \sqrt{5} }  =  \sqrt{a}  -  \sqrt{b}  \\ on \: squaring \: both \: the \: sides \\  {( \sqrt{18 - 6 \sqrt{5} }) }^{2}  =  {( \sqrt{a}  -  \sqrt{b} )}^{2}  \\ 18 - 6 \sqrt{5}  = a + b - 2 \sqrt{ab}  \\ (15 + 3) - 2 \times 3 \times  \sqrt{5}  = a + b - 2 \sqrt{ab}  \\ (15 + 3) - 2 \times  \sqrt{3 \times 3 \times 5}  = a + b - 2 \sqrt{ab}  \\ (15 + 3) - 2 \times  \sqrt{45}  = a + b  - 2 \sqrt{ab}  \\ (15 + 3) - 2 \times  \sqrt{15}  \times  \sqrt{3}  = a + b - 2 \sqrt{ab}  \\ here \: on \: comparing \: we \: get \:  \\ 15 + 3 = a + b \\ 18 = a + b \\ hence \: proved

HOPE IT HELPS☺!

anushikachabbra: thankuuuu mate
ShuchiRecites: welcome
Similar questions