Math, asked by yuvraj4368, 9 months ago


if  \sqrt{ \frac{196}{7 } }  +  \sqrt{ \frac{900}{x} }  = 4 \: find \: the \: value \: of \: x

Answers

Answered by Anonymous
4

Answer:

 \sqrt{ \frac{196}{7} }  +  \sqrt{ \frac{900}{x} }  = 4 \\  \\  \\  \\  =  >  \frac{14}{ \sqrt{7} }  +   \frac{30}{ \sqrt{x} }  = 4 \\  \\  =  > 14 \sqrt{x}  + 30 \sqrt{7}  =  \sqrt{7} . \sqrt{x} .4 \\  \\  \\  =  >  14 \sqrt{x}  -  \sqrt{7x}  + 30 \sqrt{7}  = 0 \\  \\  =  >  \sqrt{x} (14 -  \sqrt{7} ) = -  30 \sqrt{7}  \\  \\  =  >  \sqrt{x}  =  \frac{ - 30 \sqrt{7} }{14 -  \sqrt{7} }  \\  \\ x =  \frac{6300}{169 + 7 - 28 \sqrt{7} }  \\  \\  \\  =  >   \frac{6300}{176 - 28 \sqrt{7} }  \\  \\  \\  =  >   \frac{6300}{176 - 28 \times 2.6}  \\  \\  \\  =  >  \frac{6300}{101.2}

please mark me brainlist ✔️

Answered by MrBhukkad
8

\huge{ \overbrace{ \underbrace{\color{white}{ \fcolorbox{cyan}{black}{Answer:-}}}}}

 \bf{ \red{ (i)}} \:  \sqrt{ \frac{196}{7} }  +  \sqrt{ \frac{900}{x} }  = 4 \\  \bf or, \:  \sqrt{ \frac{ \cancel{196}}{ \cancel{7}} }  +   \frac{30}{ \sqrt{x} }  = 4 \\  \bf or, \:  \sqrt{28}  +  \frac{30}{ \sqrt{x} }  = 4 \\  \bf or, \:  \frac{30}{ \sqrt{x}  }  = 4 -  \sqrt{28}  \\  \bf or, \:  \sqrt{x }  =  \frac{30}{4 -  \sqrt{28} }  \\  \bf or,  \:  \sqrt{x}  =  \frac{15}{2 -  \sqrt{7} }  \\  \bf or, \: x =  \frac{225}{4 - 4 \sqrt{7 } + 7 }  \\  \bf or, \: x =  \frac{225}{11 - 4 \sqrt{7} }

Similar questions