![if \: tan \: a = cos2 \alpha \: prove \: that \: \: \\ sin2a = \frac{1 - {tan}^{4} \alpha }{1 + {tan}^{4} \alpha } if \: tan \: a = cos2 \alpha \: prove \: that \: \: \\ sin2a = \frac{1 - {tan}^{4} \alpha }{1 + {tan}^{4} \alpha }](https://tex.z-dn.net/?f=if+%5C%3A+tan+%5C%3A+a+%3D+cos2+%5Calpha++%5C%3A+prove+%5C%3A+that+%5C%3A++%5C%3A+%5C%5C++sin2a+%3D++%5Cfrac%7B1+-++%7Btan%7D%5E%7B4%7D+%5Calpha++%7D%7B1+%2B++%7Btan%7D%5E%7B4%7D++%5Calpha+%7D+)
Answers
Answered by
0
Trigonometry... just apply rules for expansion of cos 2A and sin2A in terms of sinA and cosA,,,
\frac{sec8x-1}{sec4x-1}=\frac{(1-cos8x)cos4x}{cos8x(1-cos4x)}\\\\=\frac{2sin^24x\ cos4x}{cos8x\ *\ 2\ sin^2 2x}=\frac{2sin4x\ cos4x\ *sin4x}{cos8x\ *sin^22x}\\\\=\frac{sin8x*2sin2x\ cos2x}{cos8x\ * sin^22x}=\frac{tan8x}{tan2x}
Similar questions