Math, asked by NilotpalSwargiary, 10 months ago


if \: tan \: a = cos2 \alpha  \: prove \: that \:  \: \\  sin2a =  \frac{1 -  {tan}^{4} \alpha  }{1 +  {tan}^{4}  \alpha }

Answers

Answered by yashkumarking84
0

Trigonometry... just apply rules for expansion of cos 2A and sin2A in terms of sinA and cosA,,,

\frac{sec8x-1}{sec4x-1}=\frac{(1-cos8x)cos4x}{cos8x(1-cos4x)}\\\\=\frac{2sin^24x\ cos4x}{cos8x\ *\ 2\ sin^2 2x}=\frac{2sin4x\ cos4x\ *sin4x}{cos8x\ *sin^22x}\\\\=\frac{sin8x*2sin2x\ cos2x}{cos8x\ * sin^22x}=\frac{tan8x}{tan2x}

&lt;marquee&gt;<em>Mark</em><em> </em><em>as</em><em> </em><em>bra</em><em>in</em><em> list</em><em> ⛷️</em><em>☺️</em><em>⚕️</em>

Similar questions