.
Answers
Answer:
194
Step-by-step explanation:
Given---> tanα + Cotα = 4
To find---> tan⁴α + Cot⁴α = ?
Solution---> ATQ,
tanα + Cotα = 4
Squaring both sides we get,
=>( tanα + Cotα )² = ( 4 )²
We know that,
( a + b )² = a² + b² + 2ab , applying it we get,
=> ( tanα )² + ( Cotα )² + 2 tanα Cotα = 16
We know that Cotα = 1 / tanα , applying it , we get,
=> tan²α + Cot²α + 2 tanα ( 1 / tanα ) = 16
=> tan²α + Cot²α + 2 = 16
=> tan²α + Cot²α = 16 - 2
=> tan²α + Cot²α = 14
Squaring both sides again , we get
=> ( tan²α + Cot²α )² = ( 14 )²
=> ( tan²α )² + ( Cot²α )² + 2 tan²α Cot²α = 196
We know that, tan²α = 1 / Cot²α , applying it we get,
=> tan⁴α + Cot⁴α + 2 tan²α ( 1 / tan²α ) = 196
=> tan⁴α + Cot⁴α + 2 = 196
=> tan⁴α + Cot⁴α = 196 - 2
=> tan⁴α + Cot⁴α = 194
Answer:
Step-by-step explanation:
tanα + Cotα = 4
tan⁴α + Cot⁴α = ?
Squaring both sides we get,
=>( tanα + Cotα )² = ( 4 )²
We know that,
( a + b )² = a² + b² + 2ab ,
=> ( tanα )² + ( Cotα )² + 2 tanα Cotα = 16
We know that Cotα = 1 / tanα ,
=> tan²α + Cot²α + 2 tanα ( 1 / tanα ) = 16
=> tan²α + Cot²α + 2 = 16
=> tan²α + Cot²α = 16 - 2
=> tan²α + Cot²α = 14
Squaring both sides again , we get
=> ( tan²α + Cot²α )² = ( 14 )²
=> ( tan²α )² + ( Cot²α )² + 2 tan²α Cot²α = 196
We know that, tan²α = 1 / Cot²α ,
=> tan⁴α + Cot⁴α + 2 tan²α ( 1 / tan²α ) = 196
=> tan⁴α + Cot⁴α + 2 = 196
=> tan⁴α + Cot⁴α = 196 - 2
=> tan⁴α + Cot⁴α = 194