Math, asked by 4mailanshu, 1 year ago

.
if \:  tan \alpha  + cot \alpha  = 4 \: then \:  {tan}^{4} \alpha  +  {cot}^{4} \alpha  =

Answers

Answered by rishu6845
1

Answer:

194

Step-by-step explanation:

Given---> tanα + Cotα = 4

To find---> tan⁴α + Cot⁴α = ?

Solution---> ATQ,

tanα + Cotα = 4

Squaring both sides we get,

=>( tanα + Cotα )² = ( 4 )²

We know that,

( a + b )² = a² + b² + 2ab , applying it we get,

=> ( tanα )² + ( Cotα )² + 2 tanα Cotα = 16

We know that Cotα = 1 / tanα , applying it , we get,

=> tan²α + Cot²α + 2 tanα ( 1 / tanα ) = 16

=> tan²α + Cot²α + 2 = 16

=> tan²α + Cot²α = 16 - 2

=> tan²α + Cot²α = 14

Squaring both sides again , we get

=> ( tan²α + Cot²α )² = ( 14 )²

=> ( tan²α )² + ( Cot²α )² + 2 tan²α Cot²α = 196

We know that, tan²α = 1 / Cot²α , applying it we get,

=> tan⁴α + Cot⁴α + 2 tan²α ( 1 / tan²α ) = 196

=> tan⁴α + Cot⁴α + 2 = 196

=> tan⁴α + Cot⁴α = 196 - 2

=> tan⁴α + Cot⁴α = 194

Answered by StyloBabiie
0

Answer:

Step-by-step explanation:

tanα + Cotα = 4

tan⁴α + Cot⁴α = ?

Squaring both sides we get,

=>( tanα + Cotα )² = ( 4 )²

We know that,

( a + b )² = a² + b² + 2ab ,

=> ( tanα )² + ( Cotα )² + 2 tanα Cotα = 16

We know that Cotα = 1 / tanα ,

=> tan²α + Cot²α + 2 tanα ( 1 / tanα ) = 16

=> tan²α + Cot²α + 2 = 16

=> tan²α + Cot²α = 16 - 2

=> tan²α + Cot²α = 14

Squaring both sides again , we get

=> ( tan²α + Cot²α )² = ( 14 )²

=> ( tan²α )² + ( Cot²α )² + 2 tan²α Cot²α = 196

We know that, tan²α = 1 / Cot²α ,

=> tan⁴α + Cot⁴α + 2 tan²α ( 1 / tan²α ) = 196

=> tan⁴α + Cot⁴α + 2 = 196

=> tan⁴α + Cot⁴α = 196 - 2

=> tan⁴α + Cot⁴α = 194

Similar questions